Skip to main content

Decremental Clique Problem

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

The clique problem consists in determining whether an undirected graph G of order n contains a clique of order ℓ. In this paper we are concerned with the decremental version of clique problem, where the property of containing an ℓ-clique is dynamically checked during deletions of nodes. We provide an improved dynamic algorithm for this problem for every fixed value of ℓ ≥ 3. Our algorithm naturally applies to filtering for the constraint satisfaction problem. In particular, we show how to speed up the filtering based on an important local consistency property: the inverse consistency.

This work has been partially supported by the IST Programme of the EU under contract n. IST-1999-14.186 (ALCOM-FT), by the Italian Ministry of University and Research (Project “ALINWEB: Algorithmics for Internet and the Web”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press/McGraw-Hill Book Company, Cambridge (2001)

    MATH  Google Scholar 

  3. Debruyne, R.: A property of path inverse consistency leading to an optimal PIC algorithm. In: European Conference on Artificial Intelligence, pp. 88–92 (2000)

    Google Scholar 

  4. Demetrescu, C., Italiano, G.F.: Fully dynamic transitive closure: Breaking through the O(n2) barrier. In: IEEE Symposium on Foundations of Computer Science, pp. 381–389 (2000)

    Google Scholar 

  5. Demetrescu, C., Italiano, G.F.: Fully dynamic all pairs shortest paths with real edge weights. In: IEEE Symposium on Foundations of Computer Science, pp. 260–267 (2001)

    Google Scholar 

  6. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. In: ACM Symposium on the Theory of Computing, pp. 159–166 (2003)

    Google Scholar 

  7. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set (2003); To appear in Theoretical Computer Science

    Google Scholar 

  8. Elfe, C.D., Freuder, E.C.: Neighborhood inverse consistency preprocessing. In: National Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence vol. 1, pp. 202–208 (1996)

    Google Scholar 

  9. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths and negative cycles detection on digraphs with arbitrary arc weights. In: European Symposium on Algorithms, pp. 320–331 (1998)

    Google Scholar 

  10. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fullydynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the Association for Computing Machinery 48(4), 723–760 (2001)

    MATH  Google Scholar 

  11. Huang, X., Pan, V.: Fast rectangular matrix multiplication and applications. Journal of Complexity 14(2), 257–299 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: IEEE Symposium on Foundations of Computer Science, pp. 81–91 (1999)

    Google Scholar 

  14. King, V., Sagert, G.: A fully dynamic algorithm for maintaining the transitive closure. In: ACM Symposium on the Theory of Computing, pp. 492–498 (1999)

    Google Scholar 

  15. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  16. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  17. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

    MATH  MathSciNet  Google Scholar 

  18. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: IEEE Symposium on Foundations of Computer Science, pp. 605–615 (1999)

    Google Scholar 

  19. Zwick, U.: All pairs shortest paths in weighted directed graphs - exact and almost exact algorithms. In: IEEE Symposium on Foundations of Computer Science, pp. 310–319 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grandoni, F., Italiano, G.F. (2004). Decremental Clique Problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics