Skip to main content

Inflammation as a Stimulus for Vascular Leakage and Proliferation

  • Chapter
Retinal Vascular Disease

Abstract

In the past few decades, our knowledge of the mechanisms underlying retinal vasoproliferation has increased greatly (see Chapters 2, 3.1, 3.2 and 3.3). While vasoproliferation was once considered to be mainly a consequence of ischemia, current evidence also supports a contribution of inflammatory mechanisms. Inflammation is also highly related to vascular leakage in diseases that are known to result in retinal and macular edema. Recently, inflammatory mechanisms have gained interest with respect to the retinal pathology following ischemia, as well as in diseases such as diabetic retinopathy (DR) and sickle cell retinopathy (see Chapter 27.1). In this chapter, the discussion will focus on the published data relating to the inflammatory mechanisms in ischemic retinal diseases such as DR. The definition of inflammation in this setting is the involvement of any leukocyte-mediated pathology in the course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118:445–450

    PubMed  CAS  Google Scholar 

  2. Adamis AP, Shima DT, Tolentino M, Gragoudas ES, Ferrara N, Folkman J, D’Amore PA, Miller JW (1996) Inhibition of VEGF prevents retinal ischemia-associated iris neovascularization in a primate. Arch Ophthalmol 114:66–71

    PubMed  CAS  Google Scholar 

  3. Adamis AP, Altaweel M, Bressler NM, Cunningham ET Jr, Davis MD, Goldbaum M, Gonzales C, Guyer DR, Barrett K, Patel M, Macugen Diabetic Retinopathy Study Group (2006) Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 113:23–28

    Article  PubMed  Google Scholar 

  4. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  PubMed  CAS  Google Scholar 

  5. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King G, Smith LEH (1995a) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92: 10457–10461

    Article  PubMed  CAS  Google Scholar 

  6. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995b) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544

    PubMed  CAS  Google Scholar 

  7. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  8. Antonetti D, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. J Biol Chem 274:23463–23467

    Article  PubMed  CAS  Google Scholar 

  9. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233–240

    PubMed  CAS  Google Scholar 

  10. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBOJ 18:3964–3972

    Article  CAS  Google Scholar 

  11. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343

    PubMed  CAS  Google Scholar 

  12. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, et al. (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155: 421–428

    PubMed  CAS  Google Scholar 

  13. Boeri D, Cagliero E, Podesta F, Lorenzi M (1994) Vascular wall von Willebrand factor in human diabetic retinopathy. Invest Ophthalmol Vis Sci 35:600–607

    PubMed  CAS  Google Scholar 

  14. Brooks HL Jr, Caballero S Jr, Newell CK, Steinmetz RL, Watson D, Segal MS, Harrison JK, Scott EW, Grant MB (2004) Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122:1801–1807

    Article  PubMed  CAS  Google Scholar 

  15. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genetics 21:S33–S37

    Article  Google Scholar 

  16. Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Caldwell RW (2003) Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 19:442–455

    Article  PubMed  CAS  Google Scholar 

  17. Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connolly DT, Stern D (1990) Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172:1535–1545

    Article  PubMed  CAS  Google Scholar 

  18. Comer GM, Ciulla TA (2004) Pharmacotherapy for diabetic retinopathy. Curr Opin Ophthalmol 15:508–518

    Article  PubMed  Google Scholar 

  19. Cunningham ET Jr, Adamis AP, Altaweel M, Aiello LP, Bressler NM, D’Amico DJ, Goldbaum M, Guyer DR, Katz B, Patel M, Schwartz SD; Macugen Diabetic Retinopathy Study Group (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112:1747–1757

    Article  PubMed  Google Scholar 

  20. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukamura D, Monsky D, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6

    Article  PubMed  CAS  Google Scholar 

  21. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:S10–S14

    Article  Google Scholar 

  22. Early Treatment Diabetic Retinopathy Study Research Group (1991) Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. Ophthalmology 98:741–756

    Google Scholar 

  23. Engerman RL, Kern TS (1995) Retinopathy in galactosemic dogs continues to progress after cessation of galactosemia. Arch Ophthalmol 113:355–358

    PubMed  CAS  Google Scholar 

  24. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592

    Article  PubMed  Google Scholar 

  25. ETDRS Investigators (1992) Aspirin effects on mortality and morbidity in patients with diabetes mellitus. ETDRS Report No. 14. JAMA 268:1292–1300

    Article  Google Scholar 

  26. Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW (2003) Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 969:195–204

    Article  PubMed  CAS  Google Scholar 

  27. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  PubMed  CAS  Google Scholar 

  28. Fong DS, Aiello LP, Ferris FL 3rd, Klein R (2004) Diabetic retinopathy. Diabetes Care 27:2540–2553

    Article  PubMed  Google Scholar 

  29. Franks WA, Limb GA, Stanford MR, Ogilvie J, Wolstencroft RA, Chignell AH, Dumonde DC (1992) Cytokines in human intraocular inflammation. Curr Eye Res 11:187–191

    PubMed  Google Scholar 

  30. Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Canc Res 55:4140–4145

    CAS  Google Scholar 

  31. Funatsu H, Yamashita H, Shimizu E, Kojima R, Hori S (2001) Relationship between vascular endothelial growth factor and interleukin-6 in diabetic retinopathy. Relationship between vascular endothelial growth factor and interleukin-6 in diabetic retinopathy. Retina 21:469–477

    Article  PubMed  CAS  Google Scholar 

  32. Funatsu H, Yamashita H, Ikeda T, Nakanishi Y, Kitano S, Hori S (2002) Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with diabetic macular edema and other retinal disorders. Am J Ophthalmol 133:537–543

    Article  PubMed  CAS  Google Scholar 

  33. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S (2005) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabeticmacular edema. Ophthalmology 112:806–816

    Article  PubMed  Google Scholar 

  34. Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW(2005) Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166:637–644

    PubMed  CAS  Google Scholar 

  35. Gaudry M, Bregerie O, Andrieu V, El Benna J, Pocidalo MA, Hakim J (1997) Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 41:4153–4161

    Google Scholar 

  36. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, et al. (2002)Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8:119–126

    PubMed  CAS  Google Scholar 

  37. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  PubMed  CAS  Google Scholar 

  38. Hangai M, He S, Hoffmann S, Lim JI, Ryan SJ, Hinton DR (2006) Sequential induction of angiogenic growth factors by TNF-alpha in choroidal endothelial cells. J Neuroimmunol 171:45–56

    Article  PubMed  CAS  Google Scholar 

  39. Hawrami K, Hitman GA, Rema M, Snehalatha C, Viswanathan M, Ramachandran A, Mohan V (1996) An association in non-insulin-dependent diabetes mellitus subjects between susceptibility to retinopathy and tumor necrosis factor polymorphism. Hum Immunol 46:49–54

    Article  PubMed  CAS  Google Scholar 

  40. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999a) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  41. Holash J, Wiegand SJ, Yancopoulos GD (1999b) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    Article  PubMed  CAS  Google Scholar 

  42. Honda M, Sakamoto T, Ishibashi T, Inomata H, Ueno H (2000) Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration. Gene Ther 7:978–985

    Article  PubMed  CAS  Google Scholar 

  43. Horiuchi T, Weller PF (1997) Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 17:70–77

    PubMed  CAS  Google Scholar 

  44. Iijima K, Yoshikawa N, Connolly DT, Nakamura H (1993) Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int 44:959–966

    Article  PubMed  CAS  Google Scholar 

  45. Ishida S, Yamashiro K, Usui T, Kaji Y, Ogura Y, Hida T, Honda Y, Oguchi Y, Adamis AP (2003a) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9:781–788

    Article  PubMed  CAS  Google Scholar 

  46. Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG, et al. (2003b) Vegf164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 44:2155–2162

    Article  PubMed  Google Scholar 

  47. Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, Hida T, Oguchi Y, Ambati J, Miller JW, Gragoudas ES, Ng YS, D’Amore PA, Shima DT, Adamis AP (2003c) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198:483–489

    Article  PubMed  CAS  Google Scholar 

  48. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF, Trent M, Staudt LM, Hudson JJ, Boguski MS, Lashkari DL, Shalon D, Botstein D, Brown PO (1999) The transcriptional program in response of human fibroblasts to serum. Science 293:83–87

    Article  Google Scholar 

  49. Jain RK, Munn LL (2000) Leaky vessels? Call Ang1! [news]. Nat Med 6:131–132

    Article  PubMed  CAS  Google Scholar 

  50. Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP (2001a) Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 158:147–152

    PubMed  CAS  Google Scholar 

  51. Joussen AM, Huang S, Poulaki V, Camphausen K, Beecken WD, Kirchhof B, Adamis AP (2001b) In vivo retinal gene expression in early diabetes. Invest Ophthalmol Vis Sci 42:3047–3057

    PubMed  CAS  Google Scholar 

  52. Joussen AM, Poulaki V, Tsujikawa A, Qin W, Qaum T, Xu Q, Moromizato Y, Bursell SE, Wiegand SJ, Rudge J, Ioffe E, Yancopoulos GD, Adamis AP (2002a) Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol 160:1683–1693

    PubMed  CAS  Google Scholar 

  53. Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002b) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160:501–509

    PubMed  CAS  Google Scholar 

  54. Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Dohmen S, Adamis AP (2002c) Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J 16:438–440

    PubMed  CAS  Google Scholar 

  55. Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, Ju ST, Rook SL, Esser P, Mitsiades CS, Kirchhof B, Adamis AP, Aiello LP (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17:76–78

    PubMed  CAS  Google Scholar 

  56. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18: 1450–1452

    PubMed  CAS  Google Scholar 

  57. Kern TS, Engerman RL (1995) Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci 36:490–496

    PubMed  CAS  Google Scholar 

  58. Kern TS, Engerman RL (1996) A mouse model of diabetic retinopathy. Arch Ophthalmol 114:986–990

    PubMed  CAS  Google Scholar 

  59. Khosla PK, Seth V, Tiwari HK, Saraya AK (1982) Effect of aspirin on platelet aggregation in diabetes mellitus. Diabetologia 23(2):104–7

    Article  PubMed  CAS  Google Scholar 

  60. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245

    Article  PubMed  CAS  Google Scholar 

  61. Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis AP (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98:1667–1675

    PubMed  CAS  Google Scholar 

  62. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  63. Lim JW, Kim H, Kim KH (2001) Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 81:349–360

    PubMed  CAS  Google Scholar 

  64. Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80:168–173

    Article  PubMed  CAS  Google Scholar 

  65. Limb GA, Hickman-Casey J, Hollified RD, Chignell AH (1999a) Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2453–2457

    PubMed  CAS  Google Scholar 

  66. Limb GA, Webster L, Soomro H, Janikoun S, Shilling J (1999b) Platelet expression of tumour necrosis factor-alpha (TNF-alpha), TNF receptors and intercellular adhesion molecule-1 (ICAM-1) in patients with proliferative diabetic retinopathy. Clin Exp Immunol 118:213–218

    Article  PubMed  CAS  Google Scholar 

  67. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224

    PubMed  CAS  Google Scholar 

  68. Lu M, Perez V, Ma N, Miyamoto K, Peng HB, Liao JK, Adamis AP (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci 40:1808–1812

    PubMed  CAS  Google Scholar 

  69. McCormack K (1998) Roles of COX-1 and COX-2. J Rheumatol 25:2279–2281

    PubMed  CAS  Google Scholar 

  70. McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and Pselectin in the diabetic human retina and choroid. Am J Pathol 147:642–653

    PubMed  CAS  Google Scholar 

  71. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  72. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2:992–997

    Article  PubMed  CAS  Google Scholar 

  73. Meleth AD, Agron E, Chan CC, Reed GF, Arora K, Byrnes G, Csaky KG, Ferris FL 3rd, Chew EY (2005) Serum inflammatory markers in diabetic retinopathy. Invest Ophthalmol Vis Sci 46:4295–4301

    Article  PubMed  Google Scholar 

  74. Miolata J, Maciewiez R, Kendrew J, Fledmann M, Paleolog E (2000) Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80:1195–1205

    Google Scholar 

  75. Miyamoto K, Hiroshiba N, Tsujikawa A, Ogura Y (1998) In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats Invest Ophthalmol Vis Sci 39:2190–2194

    PubMed  CAS  Google Scholar 

  76. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont A, Aiello LP, Ogura Y, Adamis AP (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA 96: 10836–10841

    Article  PubMed  CAS  Google Scholar 

  77. Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, Adamis AP (2000) Vascular endothelial growth factor-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 156:1733–1739

    PubMed  CAS  Google Scholar 

  78. Mizutani M, Kern TS, Lorenzi M (1996) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97:2883–2890

    Article  PubMed  CAS  Google Scholar 

  79. Mohle R, Green D, Moore MA, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 94:663–668

    Article  PubMed  CAS  Google Scholar 

  80. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  81. Ng EW, Adamis AP (2005) Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol 40:352–368

    PubMed  Google Scholar 

  82. Nishihira J (1998) Novel pathophysiological aspects of macrophagemigration inhibitory factor (review). Int J Mol Med 2:17–28

    PubMed  CAS  Google Scholar 

  83. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999a) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739

    Article  PubMed  CAS  Google Scholar 

  84. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y (1999b) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1891–1898

    PubMed  CAS  Google Scholar 

  85. Pairet M, Engelhardt G (1996) Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fundam Clin Pharmacol 10:1–17

    Article  PubMed  CAS  Google Scholar 

  86. Pillinger MH, Capodici C, Rosenthal P, Kheterpal N, Hanft S, Philips MR, Weissmann G (1998) Modes of action of aspirin-like drugs: salycylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc Natl Acad Sci USA 95:14540–14545

    Article  PubMed  CAS  Google Scholar 

  87. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 359: 845–888

    Article  PubMed  CAS  Google Scholar 

  88. Powell EDU, Field RA (1964) Diabetic retinopathy in rheumatoid arthritis. Lancet 2:17–18

    Article  PubMed  CAS  Google Scholar 

  89. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, Hassessian H, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2001) VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 42:2408–2413

    PubMed  CAS  Google Scholar 

  90. Radisavljevic Z, Avraham H, Avraham S (2000) Vascular endothelial growth factor upregulates ICAM-1 expression via the phosphtidylinositol3 OH-kinase/AKT/nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem 275:20770–20774

    Article  PubMed  CAS  Google Scholar 

  91. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    PubMed  CAS  Google Scholar 

  92. Safieh-Garabedian B, Dardenne M, Kanaan SA, Atweh SF, Jabbur SJ, Saade NE (2000) The role of cytokines and prostaglandin-E(2) in thymulin induced hyperalgesia. Neuropharmacology 39:1653–1661

    Article  PubMed  CAS  Google Scholar 

  93. Sakane S, Nishihira J, Hirokawa J, Yoshimura H, Honda T, Aoki K, Tagami S, Kawakami Y (1999) Regulation of macrophage migration inhibitory factor (MIF) expression by glucose and insulin in adipocytes in vitro. Mol Med 5:361–371

    Google Scholar 

  94. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585

    Article  PubMed  Google Scholar 

  95. Sato A, Iwama A, Takakura N, Nishio H, Yancopoulos GD, Suda T (1998) Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells. Int Immunol 10:1217–1227

    Article  PubMed  CAS  Google Scholar 

  96. Schröder S, Palinski W, Schmid-Schönbein GW (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139:81–100

    PubMed  Google Scholar 

  97. Senger DR, Connolly DT, Van de Water L, Feder J, Dvorak HF (1990) Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50:1774–1778

    PubMed  CAS  Google Scholar 

  98. Sfikakis PP, Markomichelakis N, Theodossiadis GP, Grigoropoulos V, Katsilambros N, Theodossiadis PG (2005) Regression of sight-threatening macular edema in type 2 diabetes following treatment with the anti-tumor necrosis factor monoclonal antibody infliximab. Diabetes Care 28:445–447

    Article  PubMed  Google Scholar 

  99. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  100. Southern E, Mir K, Schepinov M (1999) Molecular interactions on microarrays. Nat Genet 21:S5–S9

    Article  Google Scholar 

  101. Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-alpha Konzentration in Glaskörper. Anstief bei neovaskulären Erkrankungen und proliferativer diabetischer Retinopathie. Med Klin 90:134–137

    CAS  Google Scholar 

  102. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  103. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514

    Article  PubMed  CAS  Google Scholar 

  104. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  PubMed  CAS  Google Scholar 

  105. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, Ferrara N, Adamis AP (1996) Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103:1820–1828

    PubMed  CAS  Google Scholar 

  106. Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S, Ishibashi M, Charo IF, Sakamoto T, Murata T, Ishibashi T (2003) The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 74:25–32

    Article  PubMed  CAS  Google Scholar 

  107. Usui T, Ishida S, Yamashiro K, Kaji Y, Poulaki V, Moore J, et al. (2004) Vegf 164(165) as the pathological isoform: Differential leukocyte and endothelial responses through vegfr1 and vegfr2. Invest Ophthalmol Vis Sci 45:368–374

    Article  PubMed  Google Scholar 

  108. Wallach D (1997) Cell death induction by TNF: a matter of self control. Trends Biochem Sci 22:107–109

    Article  PubMed  CAS  Google Scholar 

  109. Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, Kurimoto M, Murakami T, Kimura T, Takagi H (2005a) Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 139:476–481

    Article  PubMed  CAS  Google Scholar 

  110. Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H (2005b) Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 353: 782–792

    Article  PubMed  CAS  Google Scholar 

  111. Weissmann G (1991) Aspirin. Sci Am 264:84–96

    Article  PubMed  CAS  Google Scholar 

  112. Wong MP, Chan SY, Fu KH, Leung SY, Cheung N, Yuen ST, Chung LP (2000) The angiopoietins, tie2 and vascular endothelial growth factor are differentially expressed in the transformation of normal lung to non-small cell lung carcinomas. Lung Cancer 29:11–22

    Article  PubMed  CAS  Google Scholar 

  113. Wu QD, Wang JH, Bouchier-Hayes D, Redmond HP (2000) Neutrophil-induced transmigration of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation 102:185–190

    Google Scholar 

  114. Xu Q, Qaum T, Adamis AP (2001) Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 42:789–794

    PubMed  CAS  Google Scholar 

  115. Zodochne DW, Verge VM, Cheng C, Hoke A, Jolley C, Thomsen K, Rubin I, Laurtzen M (2000) Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropathol Exp Neurol 59:798–807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joussen, A.M., Adamis, A.P. (2007). Inflammation as a Stimulus for Vascular Leakage and Proliferation. In: Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J. (eds) Retinal Vascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29542-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29542-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29541-9

  • Online ISBN: 978-3-540-29542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics