Skip to main content

Genetic Approach to Retinal Vascular Disease

  • Chapter
Retinal Vascular Disease

Abstract

Development of novel molecular biology techniques in the 1970s and 1980s furnished scientists with new tools to advance the study and treatment of human disease. Progress in the understanding of bacterial and viral biology led to innovations in molecular cloning and chimeric plasmid construction. Advances in nucleic acid sequencing allowed researchers to gain a better understanding of genes and the ability to study gene mutations. Unraveling the minutiae of molecular events involved in gene transcription and translation furthered the analysis of cellular pathways and their complex interrelationships. Production of proteins ex vivo allowed physicians to treat diseases such as diabetes with synthetic human insulin, ending the dependency on animal sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson WF (1990) September 14, 1990: the beginning. Hum Gene Ther 1:371–372

    PubMed  CAS  Google Scholar 

  2. Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, He TC (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 1:149–162

    Article  PubMed  CAS  Google Scholar 

  3. Buchschacher GL, Jr (2001) Introduction to retroviruses and retroviral vectors. Somat Cell Mol Genet 26:1–11

    Article  PubMed  Google Scholar 

  4. Buning H, Braun-Falco M, Hallek M (2004) Progress in the use of adeno-associated viral vectors for gene therapy. Cells Tissues Organs 177:139–150

    Article  PubMed  CAS  Google Scholar 

  5. Byrne S, Beatty S (2003) Current concepts and recent advances in the management of age-related macular degeneration. Ir J Med Sci 172:185–190

    Article  PubMed  CAS  Google Scholar 

  6. Carmen IH (2001) A death in the laboratory: the politics of the Gelsinger aftermath. Mol Ther 3:425–428

    Article  PubMed  CAS  Google Scholar 

  7. Chinen J, Puck JM (2004) Successes and risks of gene therapy in primary immunodeficiencies. J Allergy Clin Immunol 113:595–603; quiz 604

    Article  PubMed  CAS  Google Scholar 

  8. De Laporte L, Cruz Rea J, Shea LD (2006) Design of modular non-viral gene therapy vectors. Biomaterials 27:947–954

    Google Scholar 

  9. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47Suppl 2:S253–262

    Article  PubMed  Google Scholar 

  10. Hayreh SS, Zimmerman MB, Kimura A, Sanon A (2004) Central retinal artery occlusion. Retinal survival time. Exp Eye Res 78:723–736

    Article  PubMed  CAS  Google Scholar 

  11. Hutcheson KA (2003) Retinopathy of prematurity. Curr Opin Ophthalmol 14:286–290

    Article  PubMed  Google Scholar 

  12. Hyman L, Neborsky R (2002) Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 13:171–175

    Article  PubMed  Google Scholar 

  13. Lever AM, Strappe PM, Zhao J (2004) Lentiviral vectors. J Biomed Sci 11:439–449

    Article  PubMed  CAS  Google Scholar 

  14. Levy JA, Conrat HF, Owens RA (1994) Viruses using reverse transcription during replication. In: Virology. Prentice Hall, NewYork, pp 125–141

    Google Scholar 

  15. Machida S, Gotoh Y, Tanaka M, Tazawa Y (2004) Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol 137:938–940

    Article  PubMed  Google Scholar 

  16. Maguire MG (1999) Natural history. In: Berger JW, Fine SL, Maguire MG (eds) Age related macular degeneration. Mosby, St. Louis, pp 17–31

    Google Scholar 

  17. McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033

    Article  PubMed  CAS  Google Scholar 

  18. Merten OW, Geny-Fiamma C, Douar AM (2005) Current issues in adeno-associated viral vector production. Gene Ther 12Suppl 1:51–61

    Article  CAS  Google Scholar 

  19. Morris KV (2005) VRX-496 (VIRxSYS). Curr Opin Invest Drugs 6:209–215

    CAS  Google Scholar 

  20. Montier T, Delepine P, Pichon C, Ferec C, Porteous DJ, Midoux P (2004) Non-viral vectors in cystic fibrosis gene therapy: progress and challenges. Trends Biotechnol 22: 86–592

    Article  CAS  Google Scholar 

  21. Parks RJ (2000) Improvements in adenoviral vector technology: overcoming barriers for gene therapy. Clin Genet 58:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Quinonez R, Sutton RE (2002) Lentiviral vectors for gene delivery into cells. DNA Cell Biol 21:937–951

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt-Wolf GD, Schmidt-Wolf IG (2003) Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 9:67–72

    Article  PubMed  CAS  Google Scholar 

  24. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, et al. (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272:1413–1420

    Article  PubMed  CAS  Google Scholar 

  25. Smith LE (2003) Pathogenesis of retinopathy of prematurity. Semin Neonatol 8:469–473

    Article  PubMed  Google Scholar 

  26. Stitt AW (2003) The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol 75:95–108

    Article  PubMed  CAS  Google Scholar 

  27. Trono D (2003) Virology: picking the right spot. Science 300:1670–1671

    Article  PubMed  CAS  Google Scholar 

  28. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  PubMed  CAS  Google Scholar 

  29. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  PubMed  Google Scholar 

  30. Zhang Y, Cho CH, Atchaneeyasakul LO, McFarland T, Appukuttan B, Stout JT (2005) Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion. Invest Ophthalmol Vis Sci 46:2133–2139

    Article  PubMed  Google Scholar 

References

  1. Berger W (1998) Molecular dissection of Norrie disease. Acta Anat (Basel) 162:95–100

    Article  CAS  Google Scholar 

  2. Berger W, van de PD, Warburg M, Gal A, Bleeker-Wagemakers L, de Silva H, Meindl A, Meitinger T, Cremers F, Ropers HH (1992) Mutations in the candidate gene for Norrie disease. Hum Mol Genet 1:461–465

    Article  PubMed  CAS  Google Scholar 

  3. Berger W, van de PD, Bachner D, Oerlemans F, Winkens H, Hameister H, Wieringa B, Hendriks W, Ropers HH (1996) An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet 5:51–59

    Article  PubMed  CAS  Google Scholar 

  4. Favre CJ, Mancuso M, Maas K, McLean JW, Baluk P, McDonald DM (2003) Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am J Physiol Heart Circ Physiol 285:H1917–1938

    PubMed  CAS  Google Scholar 

  5. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  PubMed  CAS  Google Scholar 

  6. Luhmann UF, Lin J, Acar N, Lammel S, Feil S, Grimm C, Seeliger MW, Hammes HP, Berger W (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci 46:3372–3382

    Article  PubMed  Google Scholar 

  7. Meindl A, Berger W, Meitinger T, van de PD, Achatz H, Dorner C, Haasemann M, Hellebrand H, Gal A, Cremers F (1992) Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins. Nat Genet 2:139–143

    Article  PubMed  CAS  Google Scholar 

  8. Meitinger T, Meindl A, Bork P, Rost B, Sander C, Haasemann M, Murken J (1993) Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet 5:376–380

    Article  PubMed  CAS  Google Scholar 

  9. Ohlmann AV, Adamek E, Ohlmann A, Lutjen-Drecoll E (2004) Norrie gene product is necessary for regression of hyaloid vessels. Invest Ophthalmol Vis Sci 45:2384–2390

    Article  PubMed  Google Scholar 

  10. Ohlmann A, Scholz M, Goldwich A, Chauhan BK, Hudl K, Ohlmann AV, Zrenner E, Berger W, Cvekl A, Seeliger MW, Tamm ER (2005) Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci 25:1701–1710

    Article  PubMed  CAS  Google Scholar 

  11. Perez-Vilar J, Hill RL (1997) Norrie disease protein (norrin) forms disulfide-linked oligomers associated with the extracellular matrix. J Biol Chem 272:33410–33415

    Article  PubMed  CAS  Google Scholar 

  12. Rehm HL, Zhang DS, Brown MC, Burgess B, Halpin C, Berger W, Morton CC, Corey DP, Chen ZY (2002) Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J Neurosci 22:4286–4292

    PubMed  CAS  Google Scholar 

  13. Richter M, Gottanka J, May CA, Welge-Lussen U, Berger W, Lutjen-Drecoll E (1998) Retinal vasculature changes in Norrie disease mice. Invest Ophthalmol Vis Sci 39:2450–2457

    PubMed  CAS  Google Scholar 

  14. Ruether K, van de PD, Jaissle G, Berger W, Tornow RP, Zrenner E (1997) Retinoschisislike alterations in the mouse eye caused by gene targeting of the Norrie disease gene. Invest Ophthalmol Vis Sci 38:710–718

    PubMed  CAS  Google Scholar 

  15. Tazawa Y, Seaman AJ (1972) The electroretinogram of the living extracorporeal bovine eye. The influence of anoxia and hypothermia. Invest Ophthalmol 11:691–698

    PubMed  CAS  Google Scholar 

  16. Warburg M (1961) Norrie disease: a new hereditary bilateral pseudotumor of the retina. Acta Ophthalmol 39:757–772

    Google Scholar 

  17. Warburg M (1963) Norrie disease: atrofia bulborum hereditarum. Acta Ophthalmol 41:134–146

    Article  CAS  Google Scholar 

  18. Warburg M (1966) Norrie disease: a congenital oculo-acoustico-cerebral degeneration. Acta Ophthalmol 89(Suppl):1–147

    Google Scholar 

  19. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McFarland, T.J., Stout, J.T., Scholz, M., Tamm, E.R. (2007). Genetic Approach to Retinal Vascular Disease. In: Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J. (eds) Retinal Vascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29542-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29542-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29541-9

  • Online ISBN: 978-3-540-29542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics