Skip to main content

Clinical Spectroscopy

  • Chapter
Magnetic Resonance Tomography

Abstract

Intensive nuclear resonance signals can be gained from freely moving protons of cells and fatty acids that are used for MR imaging and can be used to receive morphologic and functional information. Metabolic processes in living tissue can be observed if the spectral resolution is improved for protons and if the frequency range is broadened also for other nuclei for example phosphorus-31 (31P), carbon-13 (13C), fluorine-19 (19F), potassium-39 (39K), and others. This experimental method, using highfrequency- resolution nuclear resonance signals, is called magnetic resonance spectroscopy (MRS). Application of this method in living tissue (in vivo) makes possible to observe non-invasive biomolecules and concentrations of metabolites as well as intracellular pH and pharmacokinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson AJ, Rand SD, Probst RW, Kim TA, Schultz C, Haughton VM (1998) Focal brain lesions: effect of single–voxel proton MR spectroscopic findings on treatment decisions. Radiology 209:73–78

    PubMed  CAS  Google Scholar 

  • Alexander A, Murtha A, Abdulkarim B, Mehta V, Wheatley M, Murray B, Riauka T, Hanson J, Fulton D, McEwan A, Roa W (2006) Prognostic significance of serial magnetic resonance spectroscopy over the course of radiation therapy for patients with malignant glioma. Clin Invest Med. 29:301–311

    PubMed  CAS  Google Scholar 

  • Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorous magnetic resonance spectroscopy study. Neurology 37:257–262

    PubMed  CAS  Google Scholar 

  • Arnold DL, Shoubridge EA, Emrich J, Feindel W, Villemure JG (1989) Early metabolic changes following chemotherapy of human gliomas in vivo demonstrated by phosphorus magnetic resonance spectroscopy. Invest Radiol 24:958–961

    PubMed  CAS  Google Scholar 

  • Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in-vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159

    PubMed  CAS  Google Scholar 

  • Arnold DL, de Stefano N, Narayanan S, Matthews PM (2000) Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 10:789–798

    PubMed  CAS  Google Scholar 

  • Azzopardi D, Edwards D (1995) Magnetic resonance spectroscopy in neonates. Curr Opin Neurol 8:145–149

    PubMed  CAS  Google Scholar 

  • Bachert P (1997) Kinetics of heteronuclear cross-relaxation in dipolar coupled-spin systems: applications to in vivo measurements. Concepts Magn Reson 9:227–245

    CAS  Google Scholar 

  • Bachert P (1998) Pharmacokinetics using fluorine NMR in vivo. Prog. NMR Spectrosc 33:1–56

    CAS  Google Scholar 

  • Bachert P, Bellemann ME (1992b) Kinetics of the in vivo 31P-{1H} nuclear Overhauser effect of the human-calf-muscle phosphocreatine resonance. J Magn Reson 100:146–156

    CAS  Google Scholar 

  • Bachert P, Bellemann ME, Layer G, Koch T, Semmler W, Lorenz WJ (1992a) In vivo 1H , 31P-{1H} and 13C-{1H} magnetic resonance spectroscopy of malignant histiocytoma and skeletal muscle tissue in man. NMR Biomed 5:161–170

    PubMed  CAS  Google Scholar 

  • Bachert-Baumann P, Ermark F, Zabel H-J, Sauter R, Semmler W, Lorenz WJ (1990) In vivo nuclear Overhauser effect in 31P-{1H} double-resonance experiments in a 1.5-T whole-body MR system. Magn Reson Med 15:165–172

    PubMed  CAS  Google Scholar 

  • Bakken IJ, Gribbestad IS, Singstad TE, Kvistad KA (2001) External standard method for the in vivo quantification of choline-containing compounds in breast tumors by proton MR spectroscopy at 1.5 Tesla. Magn Reson Med 46:189–192

    PubMed  CAS  Google Scholar 

  • Barker PB, Breiter SN, Soher BJ, Chatham JC, Forder JR, Samphilipo MA, Magee CA, Anderson JH (1994) Quantitative proton spectroscopy of canine brain: in vivo and in vitro correlations. Magn Reson Med 32:157–163

    PubMed  CAS  Google Scholar 

  • Barker PB, Lee RR, McArthur JC (1995) AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 195:58–64

    PubMed  CAS  Google Scholar 

  • Bartels M, Günther U, Albert K, Mann K, Schuff N, Stuckstedte H (1991) 19F magnetic resonance spectroscopy of neuroleptics: the first in vivo pharmacokinetics of trifluoperazine in the rat brain and the first in vivo spectrum of fluphenazine in the human brain. Biol Psychiatry 30:656–662

    PubMed  CAS  Google Scholar 

  • Bartha R, Drost DJ, Williamson PC (1999) Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 12:205–216

    PubMed  CAS  Google Scholar 

  • Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-aspartylglutamate in the vertebrate brain: role in glial cell-specific signalling. J Neurochem 75:453–459

    PubMed  CAS  Google Scholar 

  • Beauchamp NJ Jr, Barker PB, Wang PY, vanZijl PC (1999) Imaging of acute cerebral ischemia. Radiology 212:307–324

    PubMed  Google Scholar 

  • Beckmann N, Turkalj 1, Seelig J, Keller U (1991). 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30:6362–6366

    PubMed  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-Acetyl-l-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev13:23–31

    Google Scholar 

  • Blamire AM, Rajagopalan B, Radda GK (1999) Measurement of myocardial pH by saturation transfer in man. Magn Reson Med 41:198–203

    PubMed  CAS  Google Scholar 

  • Blankenhorn M, Bachert P, Semmler W, Ende G, Tronnier V, van Kaick G, Sartor K (1999) Phosphor-31-MR Spektroskopische Bildgebung bei präoperativer Embolisationstherapie von Meningeomen. Fortschr Rontgenstr 170:568–574

    CAS  Google Scholar 

  • Bluml S, Seymour KJ, Ross BD (1999) Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled 31P MRS in in vivo human brain. Magn Reson Med 42:643–654

    PubMed  CAS  Google Scholar 

  • Bluml S, Moreno-Torres A, Ross BD (2001) 1–13C glucose MRS in chronic hepatic encephalopathy in man. Magn Reson Med 45:981–993

    PubMed  CAS  Google Scholar 

  • Boesch C, Gruetter R, Martin E, Duc G, Wüthrich K (1989) Variations in the in vivo P-31 MR spectra of the developing human brain during postnatal life. Radiology 172:197–199

    PubMed  CAS  Google Scholar 

  • Boesch C, Elsing C, Wegmuller H, Felblinger J, Vock P, Reichen J (1997) Effect of ethanol and fructose on liver metabolism: a dynamic 31phosphorus magnetic resonance spectroscopy study in normal volunteers. Magn Reson Imaging 15:1067–1077

    PubMed  CAS  Google Scholar 

  • Boesiger P, Buchli R, Meier D, Steinmann B, Gitzelmann R (1994) Changes of liver metabolite concentrations in adults with disorders of fructose metabolism after intravenous fructose by 31P magnetic resonance spectroscopy. Pediatr Res 36:436–440

    PubMed  CAS  Google Scholar 

  • Bolo NR, Hode Y, Nedelec JF, Laine E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23:428–438

    PubMed  CAS  Google Scholar 

  • Bongers H, Schick F, Skalej M, Hess CF, Jung WI (1992a) Localized in vivo 1H spectroscopy of human bone and soft tissue tumours. Eur J Radiol 2:459–464

    Google Scholar 

  • Bongers H, Schick F, Skalej M, Jung Wl, Einsele H (1992b) Localized in vivo 1H spectroscopy and chemical shift imaging of the bone marrow in leukemic patients. Eur J Radiol 2:350–356

    Google Scholar 

  • Bottomley PA (1989) Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 170:1–15

    PubMed  CAS  Google Scholar 

  • Bottomley PA, Foster TH, Darrow RD (1984) Depth resolved surface coil spectroscopy (DRESS) for in vivo 1H, 31P and 13C NMR. J Magn Reson 59:338–342

    CAS  Google Scholar 

  • Bottomley PA, Herfkens RJ, Smith LS, Bashore TM (1987) Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 165:703–707

    PubMed  CAS  Google Scholar 

  • Bottomley PA, Atalar E, Weiss RG (1996) Human cardiac high-energy phosphate metabolite concentrations by 1 D-resolved NMR spectroscopy. Magn Reson Med 35:664–670

    PubMed  CAS  Google Scholar 

  • Bourdel-Marchasson I, Biran M, Thiaudiere E, Delalande C, Decamps A, Manciet G, Canioni P (1996) 31P magnetic resonance spectroscopy of human liver in elderly patients: changes according to nutritional status and inflammatory state. Metabolism 45:1059–1061

    PubMed  CAS  Google Scholar 

  • Bovée WMM (1991) Quantification of glutamate, glutamine, and other metabolites in in vivo proton NMR spectroscopy. NMR Biomed 4:81–84

    PubMed  Google Scholar 

  • Bovée W, Creyghton J (1992) Acquisition and processing of the NMR data. In: Certaines JD, Bovée W, Podo F (eds) Magnetic resonance spectroscopy in biology and medicine. Pergamon, Oxford

    Google Scholar 

  • Brechtel K, Dahl DB, Machann J, Bachmann OP, Wenzel I, Maier T, Claussen CD, Haring HU, Jacob S, Schick F (2001) Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H MRS study. Magn Reson Med 45:179–183

    PubMed  CAS  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79:3523–3526

    PubMed  CAS  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med 9:126–131

    PubMed  CAS  Google Scholar 

  • Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1991) Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo. Magn Reson Med 17:82–94

    PubMed  CAS  Google Scholar 

  • Buchli R, Martin E, Boesiger P, Rumpel H (1994) Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo. Pediatr Res 35:431–435

    PubMed  CAS  Google Scholar 

  • Burtscher IM, Holtas S (2001) Proton MR spectroscopy in clinical routine J Magn Reson Imaging 13:560–567

    Google Scholar 

  • Cadoux-Hudson TAD, Blackledge MJ, Rajagopalan B, Taylor DJ, Radda GK (1989) Human primary brain tumor metabolism in vivo: a phosphorus magnetic resonance spectroscopy study. Br J Cancer 60:430–436

    PubMed  CAS  Google Scholar 

  • Cady EB (2001) Magnetic resonance spectroscopy in neonatal hypoxic-ischaemic insults. Childs Nerv Syst 17:145–149

    PubMed  CAS  Google Scholar 

  • Cady EB, Costello AM, Dawson MJ, Delpy DT, Hope PL, Reynolds EO, Tofts PS, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 14:1059–1062

    Google Scholar 

  • Capizzano AA, Vermathen P, Laxer KD, Ende GR, Norman D, Rowley H, Matson GB, Maudsley AA, Segal MR, Weiner MW (2001) Temporal lobe epilepsy: qualitative reading of 1H MR spectroscopic images for presurgical evaluation. Radiology 218:144–151

    PubMed  CAS  Google Scholar 

  • Chamuleau RAFM, Bosman DK, Bovée WMM, Luyten PR, den Hollander JA (1991) What the clinician can learn from MR glutamine/glutamate assays. NMR Biomed 4:103–108

    PubMed  CAS  Google Scholar 

  • Chance B (1989) What are the goals of magnetic resonance research? NMR Biomed 2:5–6

    Google Scholar 

  • Chang L, Miller BL, McBride D, Conford M, Oropilla G, Buchthal S, Chiang F, Aronow H, Ernst T (1995) Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radio­logy 197:525–531

    CAS  Google Scholar 

  • Cheng LL, Newell K, Le R, Hyman BT, Gonzalez RG (2001) Now it can be said: N-acetylaspartate is a neuronal marker—an HRMAS proton MR spectroscopy and stereo­logy study. Proc Intl Soc Magn Reson Med 9:1672

    Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    PubMed  CAS  Google Scholar 

  • Constans JM, Meyerhoff DJ, Gerson J, MacKay S, Norman D, Fein G, Weiner MW (1995) H-1 MR spectroscopic imaging of white matter signal hyperintensities: Alzheimer disease and ischemic vascular dementia. Radiology 197:517–523

    PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (1991) Concepts of citrate production and secretion by prostate: 1: Metabolic relationship. Prostate 18 : 25–46

    Google Scholar 

  • Cox IJ, Bryant DJ, Collins AG, George P, Harman RR, Hall AS, Hodgson HJ, Khenia S, McArthur P, Spencer DH, et al. (1988) Four-dimensional chemical shift MR imaging of phosphorus metabolites of normal and diseased human liver. J Comput Assist Tomogr. 12:369-376

    PubMed  CAS  Google Scholar 

  • Daly PF, Lyon RC, Faustino PJ, Cohen JS (1987) Phospholipid metabolism in cancer cells monitored by in vivo 31P NMR spectroscopy. J Biol Chem 262:14875–14878

    PubMed  CAS  Google Scholar 

  • Danielsen R, Ross B (eds) (1999) Magnetic resonance spectroscopy diagnosis of neurological diseases. Dekker, New York

    Google Scholar 

  • de Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL (1995) Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology 45:1193–1198

    PubMed  Google Scholar 

  • Dewhirst MW, Sostman HD, Leopold KA, Charles HC, Moore D, Burn RA, Tucker JA, Harrelson JM, Oleson JR. (1990) Soft-tissue sarcomas: MR imaging and MR spectroscopy for prognosis and therapy monitoring. Radiology 174:847-853

    PubMed  CAS  Google Scholar 

  • Dross K, Kewitz H (1972) Concentration and origin of choline in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 274:91–106

    PubMed  CAS  Google Scholar 

  • Du F, Zhu XH, Qiao H, Zhang X, Chen W (2007) Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med 57:103–114

    PubMed  CAS  Google Scholar 

  • Dzik-Jurasz AS, Collins DJ, Leach MO, Rowland IJ (2000) Gallbladder localization of 19F MRS catabolite signals in patients receiving bolus and protracted venous infusional 5-fluorouracil. Magn Reson Med 44:516–20

    PubMed  CAS  Google Scholar 

  • el-Deredy W (1997) Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: a review. NMR Biomed 10:99–124

    PubMed  CAS  Google Scholar 

  • Ende G, Bachert P (1993) Dynamic 13C-{1H} nuclear polarization of lipid methylene resonances applied to broadband proton-decoupled in vivo 13C MR spectroscopy of human breast and calf tissue. Magn Reson Med 30:415–423

    PubMed  CAS  Google Scholar 

  • Ende GR, Laxer KD, Knowlton RC, Matson GB, Schuff N, Fein G, Weiner MW (1997) Temporal lobe epilepsy: bilateral hippocampal metabolic changes revealed at proton MR spectroscopic imaging. Radiology 202:809–817

    PubMed  CAS  Google Scholar 

  • Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson B 102:1–8

    CAS  Google Scholar 

  • Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radio­logy 203:829–836

    CAS  Google Scholar 

  • Ernst T, Itti E, Itti L, Chang L (2000) Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: A coregistered 1H MRS and SPECT study. J Magn Reson Imaging 12:859–865

    PubMed  CAS  Google Scholar 

  • Evanochko W, Ng TC, Glickson JD (1984) Application of in vivo NMR spectroscopy to cancer. Magn Reson Med 1:508–534

    PubMed  CAS  Google Scholar 

  • Federico F, Simone IL, Lucivero V, Giannini P, Laddomada G, Mezzapesa DM, Tortorella C (1998) Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke. Arch Neurol 55:489–494

    PubMed  CAS  Google Scholar 

  • Fowler AH, Pappas AA, Holder JC, Finkbeiner AE, Dalrymple GV, Mullins MS, Sprigg JR, Komoroski RA. (1992) Differentiation of human prostate cancer from benign hypertrophy by in vitro 1H NMR. Magn Reson Med. 25(1):140-147

    PubMed  CAS  Google Scholar 

  • Frahm J, Merboldt KD, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508

    CAS  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93

    PubMed  CAS  Google Scholar 

  • Fu L, Matthews PM, de Stefano N, Worsley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL (1998) Imaging axonal damage of non-appearing white matter in multiple sclerosis. Brain 121:103–113

    PubMed  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    PubMed  CAS  Google Scholar 

  • Geurts JJ, Barkhof F, Castelijns JA, Uitdehaag BM, Polman CH, Pouwels PJ (2004) Quantitative 1H MRS of healthy human cortex, hippocampus, and thalamus: metabolite concentrations, quantification precision, and reproducibility. J Magn Reson Imaging 20:366–371

    PubMed  Google Scholar 

  • Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng. 7:287–326

    PubMed  CAS  Google Scholar 

  • Gillard JH, Barker PB, van Zijl PC, Bryan RN, Oppenheimer SM (1996) Proton MR spectroscopy in acute middle cerebral artery stroke. AJNR 17:873–886

    PubMed  CAS  Google Scholar 

  • Glaholm J, Leach MO, Collins DJ, Mansi J, Sharp JC, Madden A, Smith IE, McCready VR (1989) In-vivo 31P magnetic resonance spectroscopy for monitoring treatment response in breast cancer. Lancet 10:1326–1327

    Google Scholar 

  • Glaholm J, Leach MO, Collins D, al Jehazi B, Sharp JC, Smith TA, Adach J, Hind A, McCready VR, White H. (1990) Comparison of 5-fluorouracil pharmacokinetics following intraperitoneal and intravenous administration using in vivo 19F magnetic resonance spectroscopy. Br J Radiol. 63:547-553

    PubMed  CAS  Google Scholar 

  • Gonen O, Murphy-Boesch J, Li C-W, Padavic-Shaller K, Negendank WG, Brown TR (1997) Simultaneous 3D NMR spectroscopy of proton-decoupled fluorine and phosphorus in human liver during 5-fluorouracil chemotherapy. Magn Reson Med 37:164–169

    PubMed  CAS  Google Scholar 

  • Gonen O, Catalaa I, Babb JS, Ge Y, Mannon LJ, Kolson DL, Grossman RI (2000) Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54:15–19

    PubMed  CAS  Google Scholar 

  • Gotsis ED, Fountas K, Kapsalaki E, Toulas P, Peristeris G, Papadakis N (1996) In vivo proton MR spectroscopy: the diagnostic possibilities of lipid resonances in brain tumors. Anticancer Res 16:1565–1567

    PubMed  CAS  Google Scholar 

  • Graham GD, Kalvach P, Blamire AM, Brass LM, Fayad PD, Prichard JW (1995) Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. Stroke 26:225–229

    PubMed  CAS  Google Scholar 

  • Grand S, Passaro G, Ziegler A, Estève F, Boujet C, Hoffmann D, Rubin C, Segebarth C, Décorps M, le Bas JF, Rémy C (1999) Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy—initial results. Radiology 213:785–793

    PubMed  CAS  Google Scholar 

  • Graves EE, Nelson SJ, Vigneron DB, Verhey L, McDermott M, Larson D, Chang S, Prados MD, Dillon WP (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 22:613–624

    PubMed  CAS  Google Scholar 

  • Grodd W, Krägeloh-Mann I, Petersen D, Trefz FK, Harzer K (1990) In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 336:437–438

    PubMed  CAS  Google Scholar 

  • Groenendaal F, Roelants-Van Rijn AM, van Der Grond J, Toet MC, de Vries LS (2001) Glutamate in cerebral tissue of asphyxiated neonates during the first week of life demonstrated in vivo using proton magnetic resonance spectroscopy. Biol Neonate 79:254–257

    PubMed  CAS  Google Scholar 

  • Gückel F, Brix G, Semmler W, Knauf W, Ho AD, van Kaick G (1990a) Systemic bone marrow disorders: characterization with proton chemical shift imaging. J Comp Assist Tomogr 14:633–642

    Google Scholar 

  • Gückel F, Brix G, Semmler W, Ho AD, Körbling M, Georgi M, van Kaick G (1990b) Proton chemical shift imaging of bone marrow for monitoring therapy in leukemia. J Comp Assist Tomogr 14:954–959

    Google Scholar 

  • Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 11:148–156

    PubMed  CAS  Google Scholar 

  • Hamilton PA, Cady EB, Wyatt JS, Hope PL, Delpy DT, Reynolds ED (1986) Impaired energy metabolism in brains of newborn infants with increased cerebral echo densities. Lancet 1:1242–1246

    PubMed  CAS  Google Scholar 

  • Häussinger D, Laubenberger J, vom Dahl D, Ernst Th, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscpic studies on human brain myo-Inositol in hypoosmolarity and hepatic encephalopathy. Gastroenterology 107:145–148

    Google Scholar 

  • Heerschap A, Luyten PR, van der Heyden JI, Oosterwaal LJ, den Hollander JA (1989) Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5 T. NMR Biomed 2:124–32

    PubMed  CAS  Google Scholar 

  • Heerschap A, Jager GJ, van den Graaf M, Barentsz JO, Ruijs SH (1997) Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med 37:204–213

    PubMed  CAS  Google Scholar 

  • Heesters MAAM, Kamman RL, Mooyaart EL, Go KG (1993) Localized proton spectroscopy of inoperable brain gliomas: response to radiation therapy. J Neurooncol 17:27–35

    PubMed  CAS  Google Scholar 

  • Heindel W, Bunke J, Glathe S, Steinbrich W, Mollevaneer L (1988) Combined 1H MR imaging and localized 31P spectroscopy of intracranial tumors in 43 patients. J Comp Assist Tomogr 12:907–916

    CAS  Google Scholar 

  • Heindel W, Kugel H, Wenzel F, Stippel D, Schmidt R, Lackner K (1997) Localized 31P MR spectroscopy of the transplanted human kidney in situ shows altered metabolism in rejection and acute tubular necrosis. J Magn Reson Imaging 7:858–864

    PubMed  CAS  Google Scholar 

  • Heiss WD, Heindel W, Herholz K, Rudolf J, Bunke J, Jeske J, Friedmann G (1990) Positron emission tomograph of fluorine-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors. J Nucl Med 31:302–310

    PubMed  CAS  Google Scholar 

  • Herholz K, Heindel W, Luyten PR, denHollander JA, Pietrzyk U, Voges J, Kugel H, Friedmann G, Heiss WD (1992) In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol. 31:319-327

    PubMed  CAS  Google Scholar 

  • Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, Tomasi LG, Perkin RM, Hinshaw DB (1997) Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants and children. Radiology 202:487–496

    PubMed  CAS  Google Scholar 

  • Hricak H (1989) Phosphorus-31 MRS of the kidney. Invest Radiol 24:993–996

    PubMed  CAS  Google Scholar 

  • Hricak H (2005) MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol 78(Spec no. 2):S103–S111

    PubMed  Google Scholar 

  • Hubesch B, Sappey-Marinier D, Roth K, Matson GB, Weiner MW (1990) P-31 MR spectroscopy of normal human brain and brain tumors. Radiology 174:401–409

    PubMed  CAS  Google Scholar 

  • Husted CA, Duijn JH, Matson GB, Maudsley AA, Weiner MW (1994) Molar quantitation of in vivo proton metabolites in human brain with 3D magnetic resonance spectroscopic imaging. Magn Reson Imaging 12:661–667

    PubMed  CAS  Google Scholar 

  • Huzjan R, Sala E, Hricak H (2005) Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat Clin Pract Urol 2:434–442

    PubMed  CAS  Google Scholar 

  • Irving MG, Brooks WM, Brereton IM, Galloway GJ, Field J, Bell JR, Harris MG, Baddeley H, Doddrell DM. Use of high resolution in vivo volume selected 1H-magnetic resonance spectroscopy to investigate leukemia in humans. Cancer Res. 1987 47(14):3901-3906

    Google Scholar 

  • Jimenez JV, Richards TL, Heide AC, Grierson JR, Shankland EG (1995) Incorporation of a phosphonium analogue of choline into the rat brain as measured by magnetic resonance spectroscopy. Magn Reson Med 33:285–292

    PubMed  CAS  Google Scholar 

  • Jüngling FD, Wakhloo AK, Hennig J (1993) In vivo proton spectroscopy of meningioma after preoperative embolization Magn Reson Med 30:155–160

    Google Scholar 

  • Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67:1584–1594

    PubMed  CAS  Google Scholar 

  • Kelm BM, Menze BH, Zechmann CM, Baudendistel KT, Hamprecht FA (2007) Automated estimation of tumor probability in prostate MRSI: pattern recognition vs. quantification. Magn Reson Med 150–159

    Google Scholar 

  • Kim GE, Lee JH, Cho YP, Kim ST (2001) Metabolic changes in the ischemic penumbra after carotid endarterectomy in stroke patients by localized in vivo proton magnetic resonance spectroscopy (1H MRS). Cardiovasc Surg 9:345–355

    PubMed  CAS  Google Scholar 

  • Kim SH, Chang KH, Song IC, Han MH, Kim HC, Kang HS, Han MC (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology 204:239–245

    PubMed  CAS  Google Scholar 

  • Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10:2–12

    PubMed  CAS  Google Scholar 

  • Kiyono K, Shibata A, Sone S, Watanabe T, Oguchi M, Shikama N, Ichijo T, Kiyosawa K, Sodeyama T (1998) Relationship of 31P MR spectroscopy to the histopathological grading of chronic hepatitis and response to therapy. Acta Radiol 39:309–314

    PubMed  CAS  Google Scholar 

  • Komoroski RA (2005) Biomedical applications of 7Li NMR. NMR Biomed 18:67–73

    PubMed  CAS  Google Scholar 

  • Komoroski RA, Newton JEO, Karson C, Cardwell D, Jagannathan NR, Sprigg J (1989) Detection of psychoactive drugs in vivo in human brain using 19F NMR spectroscopy. In: Proceedings of the 8th Annual Meeting SMRM, Amsterdam, vol. 1, p 444

    Google Scholar 

  • Komoroski RA, Newton JEO, Walker E, Cardwell D, Jagannathan NR, Ramaprasad S, Sprigg J (1990) In vivo NMR spectroscopy of lithium-7 in humans. Magn Reson Med 15:347–356

    PubMed  CAS  Google Scholar 

  • Koopmans RA, Li DKB, Zhu G, Allen PS, Penn A, Paty DW (1993) Magnetic resonance spectroscopy of multiple sclerosis: in-vivo detection of myelin breakdown products. Lancet 341:631–632

    PubMed  CAS  Google Scholar 

  • Kreis R, Farrow NA, Ross BD (1990) Diagnosis of hepatic encephalopathy by proton magnetic resonance spectroscopy. Lancet 336:635–636

    PubMed  CAS  Google Scholar 

  • Kreis R, Ernst T, Ross BD (1993a) Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson B 102:9–19

    CAS  Google Scholar 

  • Kreis R, Ernst T, Ross BD (1993b) Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 30:424–437

    PubMed  CAS  Google Scholar 

  • Kreis R, Arcinue E, Ernst T, Shonk TK, Flores R, Ross BD (1996) Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy. J Clin Invest Mar 97:1142–1154

    CAS  Google Scholar 

  • Kreis R, Jung B, Slotboom J, Felblinger J, Boesch C (1999) Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. J Magn Reson 137:350–357

    PubMed  CAS  Google Scholar 

  • Krems B, Bachert P, Schlemmer H-P, Zabel H-J, van Kaick G, Lorenz WJ (1994 2D 19F chemical shift imaging of the metastatic liver of patients with colorectal tumors undergoing 5-fluorouracil chemotherapy. In: Proceedings of the 2nd Annual Meeting SMRM, San Francisco, vol. 3, p 1163

    Google Scholar 

  • Krems B, Bachert P, Zabel H-J, Lorenz WJ (1995) 19F-{1H} nuclear Overhauser effect and proton decoupling of 5-fluorouracil and α-fluoro-β-alanine. J Magn Reson B 108:155–164

    PubMed  CAS  Google Scholar 

  • Kugel H, Wittsack H-J, Wenzel F, Stippel D, Heindel W, Lackner K (2000) Non-invasive determination of metabolite concentrations in human transplanted kidney in vivo by 31P MR spectroscopy. Acta Radiol 41:634–641

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Thomas A, Jajodia P, Weiner MW, James TL, Vigneron DB, Narayan P (1991) 31P spectroscopy of the human prostate gland in vivo using a transrectal probe. Magn Reson Med 22:404–413

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Nelson SJ, Hricak H, MacDonald JM, Konety B, Narayan P (1995) Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 45:459–466

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Hricak H, Parivar F, Nelson SJ, Shinohara K, Carroll PR (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3 D H-1 MR spectroscopic imaging. Radiology 200:489–496

    PubMed  CAS  Google Scholar 

  • Lamb HJ, Beyerbacht HP, Ouwerkerk R, Doornbos J, Pluim BM, van der Wall EE, van der Laarse A, de Roos A (1997) Metabolic response of normal human myocardium to high-dose atropine-dobutamine stress studied by 31P MRS. Circulation 96:2969–2977

    PubMed  CAS  Google Scholar 

  • Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos J, van der Wall EE, de Roos A (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99:2261–2267

    PubMed  CAS  Google Scholar 

  • Laubenberger J, Häussinger D, Bayer S, Thielemann S, Schneider B, Mundinger A, Hennig J, Langer M (1996) HIV-related abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 199:805–810

    PubMed  CAS  Google Scholar 

  • Laubenberger J, Häussinger D, Bayer S, Gufler H, Hennig J, Langer M (1997) Demonstration of cerebral metabolic abnormalities in asymptomatic patients with liver cirrhosis by proton MR spectroscopy. Gastroenterology; 112:1610–1618

    PubMed  CAS  Google Scholar 

  • Laubenberger J, Bayer S, Thiel T, Hennig J, Langer M (1998) Klinische Anwendungen der Protonen-Magnetresonanz-Spektroskopie des Gehirns. Fortschr Röntgenstr 168:539–549

    CAS  Google Scholar 

  • Leach MO, Verrill M, Glaholm J, Smith TA, Collins DJ, Payne GS, Sharp JC, Ronen SM, McCready VR, Powles TJ, Smith IE (1998) Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed 11:314–340

    PubMed  CAS  Google Scholar 

  • Levine SR, Helpern JA, Welch KM, Vande Linde AM, Sawaya KL, Brown EE, Ramadan NM, Deveshwar RK, Ordidge RJ (1992) Human focal cerebral ischemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Radiology. 185:537-544

    PubMed  CAS  Google Scholar 

  • Li C-W, Gonen O (1996) Simultaneous 3D NMR spectroscopy of fluorine and phosphorus in human liver during 5-fluorouracil chemotherapy. Magn Reson Med 35:841–847

    PubMed  CAS  Google Scholar 

  • Li C-W, Negendank WG, Padavic-Shaller KA, O’Dwyer PJ, Murphy-Boesch J, Brown TR (1996) Quantitation of 5-fluorouracil catabolism in human liver in vivo by three-dimensional localized 19F magnetic resonance spectroscopy. Clin Cancer Res 2:339–345

    PubMed  CAS  Google Scholar 

  • Lin A, Bluml S, Mamelak N (1999) Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspicious malignant brain tumors. J Neurooncol 45:69–81

    PubMed  CAS  Google Scholar 

  • Lin A, Ross BD, Harris K, Wong W (2005) Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2:197–214

    PubMed  Google Scholar 

  • Löffler R, Sauter R, Kolem H, Haase A, von Kienlin M (1998) Localized spectroscopy from anatomically matched compartments: improved sensitivity and localization for cardiac 31P MRS in humans. J Magn Reson 134:287–299

    PubMed  Google Scholar 

  • Lowry OH, Berger SJ, Chi MMY, Blackshaw A, Outlaw W (1977) Diversity of metabolic patterns in human brain tumors. I. High energy phosphate compounds and basic composition. J Neurochem 29:959–977

    PubMed  CAS  Google Scholar 

  • Luyten PR, Bruntink G, Sloff FM, Vermeulen JWAH, van der Heijden JI, den Hollander JA, Heershap A (1989) Broadband proton decoupling in human 31P NMR spectroscopy. NMR Biomed 1:177–183

    PubMed  CAS  Google Scholar 

  • MacKay S, Ezekiel F, Di Sclafani V, Meyerhoff DJ, Gerson J, Norman D, Fein G, Weiner MW (1996) Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology 198:537-545

    PubMed  CAS  Google Scholar 

  • Mangia S, Tkac I, Gruetter R, Van De Moortele PF, Giove F, Maraviglia B, Ugurbil K (2006) Sensitivity of single-voxel 1H MRS in investigating the metabolism of the activated human visual cortex at 7 T. Magn Reson Imaging. 24:343–348

    PubMed  Google Scholar 

  • Marshall I, Wardlaw J, Cannon J, Slattery J, Sellar RJ (1996) Reproducibility of metabolite peak areas in 1H MRS of brain. Magn Reson Imaging 14:281–292

    PubMed  CAS  Google Scholar 

  • Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high-resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152

    CAS  Google Scholar 

  • McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ (2001) An automated technique for the quantitative assessment of 3D MRSI data from patients with glioma. J Magn Reson Imaging 13:167–177

    PubMed  CAS  Google Scholar 

  • Menard C, Smith ICP, Somorjai RL, Leboldus L, Patel R, Littman C, Robertson SJ, Bezabeh T (2001) Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int J Radiat Oncol Biol Phys 50:317–323

    PubMed  CAS  Google Scholar 

  • Meyer RA, Fisher MJ, Nelson SJ, Brown TR (1988) Evaluation of manual methods for integration of in vivo phosphorus NMR spectra. NMR Biomed 1:131–135

    PubMed  CAS  Google Scholar 

  • Meyerhoff DJ, Boska MD, Thomas AM, Weiner MW (1989) Alcoholic liver disease: quantitative image-guided P-31 MR spectroscopy. Radiology 173:393–400

    PubMed  CAS  Google Scholar 

  • Meyerhoff DJ, Karczmar GS, Valone F, Venook A, Matson GB, Weiner MW (1992) Hepatic cancers and their response to chemoembolization therapy. Quantitative image-guided 31P magnetic resonance spectroscopy. Invest Radiol 27:456–464

    PubMed  CAS  Google Scholar 

  • Meyerhoff DJ, MacKay S, Bachman L, Poole N, Dillon W, Fein CM, Weiner M (1993) Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 43:509–515

    PubMed  CAS  Google Scholar 

  • Michaelis T, Merboldt KD, Hänicke W, Gyngell ML, Bruhn H, Frahm J (1991) On the identification of cerebral metabolites in localized 1H NMR spectra of human brain in vivo. NMR Biomed 4:90–98

    PubMed  CAS  Google Scholar 

  • Michaelis T, Merboldt KD, Bruhn H, Hänicke W, Math, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    PubMed  CAS  Google Scholar 

  • Mierisová S, Ala-Korpela M (2001) MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed 14:247–259

    PubMed  Google Scholar 

  • Mierisová S, van de Boogaart A, Tkac I, van Hecke P, Vanhamme L, Liptaj T (1998) New approach for quantification of short echo time in vivo 1H MR spectra of brain using AMARES. NMR Biomed 11:32–39

    PubMed  Google Scholar 

  • Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115

    PubMed  CAS  Google Scholar 

  • Moller HE, Gaupp A, Vestring T, Dietl KH, Vermathen P, Buchholz B, Peters PE (1995) Kinetics of metabolism in human kidney transplants measured by dynamic 31P NMR spectroscopy. Z Naturforsch (C) 50:439–450

    CAS  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  • Naegele T, Grodd W, Viebahn R, Seeger U, Klose U, Seitz D, Kaiser S, Mader I, Mayer J, Lauchart W, Gregor M, Voigt K (2000) MR imaging and 1H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology 216:683–691

    PubMed  CAS  Google Scholar 

  • Nakae I, Mitsunami K, Matsuo S, Matsumoto T, Morikawa S, Inubushi T, Koh T, Horie M. (2004) Assessment of myocardial creatine concentration in dysfunctional human heart by proton magnetic resonance spectroscopy. Magn Reson Med Sci 3:19–25

    PubMed  Google Scholar 

  • Narayana PA, Hazle JD, Jackson EF, Fotedar LK, Kulkarni MY (1988) In vivo 1H spectroscopy studies of human gastrocnemius muscle at 1.5 T. Magn Res Imaging 6:481–485

    CAS  Google Scholar 

  • Narayana PA, Jajodia P, Kurhanewicz J, Thomas A, MacDonald J, Hubesch B, Hedgcock M, Anderson CM, James TL, Tanagho EA, et al. (1991) Characterization of prostate cancer, benign prostatic hyperplasia and normal prostates using transrectal 31phosphorus magnetic resonance spectroscopy: a preliminary report. J Urol. 146:66-74

    Google Scholar 

  • Naruse S, Horikawa Y, Tanaka C, Higuchi T, Ueda S, Hirakawa K, Nishikawa H, Watari H (1985) Observations of energy metabolism in neuroectodermal tumors using in vivo 31P-NMR. Magn Reson Imaging. 3:117-123

    PubMed  CAS  Google Scholar 

  • Naruse S, Hirakawa K, Horikawa Y, Tanaka C, Higuchi T, Ueda S, Nishikawa H, Watari H (1985) Measurements of in vivo 31P nuclear magnetic resonance spectra in neuroectodermal tumors for the evaluation of the effects of chemotherapy. Cancer Res. 45:2429-2433

    PubMed  CAS  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    PubMed  CAS  Google Scholar 

  • Nelson SJ, Huhn S, Vigneron DB, Day MR, Wald LL, Prados M, Chang S, Gutin PH, Sneed PK, Verhey L, Hawkins RA, Dillon WP (1997) Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. J Magn Reson Imaging. 7:1146-1152

    PubMed  CAS  Google Scholar 

  • Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12:123–138

    PubMed  CAS  Google Scholar 

  • Ng TC, Evanochko WT, Hiramoto RN Ghanta VK, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1982) 31P NMR spectroscopy of in vivo tumors. J Magn Reson 49:271–286

    CAS  Google Scholar 

  • Ng TC, Vijayakumar S, Majors AW, Thomas FJ, Meaney TF, Baldwin NJ (1987) Response of a non-Hodgkin’s lymphoma to 60Co therapy monitored by 31P MRS in situ. Int J Rad Oncol Biol Phys 13:1545–1551

    CAS  Google Scholar 

  • Ng TC, Majors AW, Vijayakumar S, Baldwin NJ, Thomas FJ, Koumoundouros I, Taylor ME, Grundfest SF, Meaney TF, Tubbs RR, et al. (1989) Human neoplasm pH and response to radiation therapy: P-31 MR spectroscopy studies in situ. Radiology. 170:875-878

    PubMed  CAS  Google Scholar 

  • Oberhänsli RD, Hilton-Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK (1986) Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 2:8–11

    Google Scholar 

  • Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour 1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed (in press). doi:10.1002/nbm.1147

    Google Scholar 

  • Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745–752

    PubMed  CAS  Google Scholar 

  • Pavlakis SG, Kingsley PB, Harper R, Buckwald S, Spinazzola R, Frank Y, Prohovnik I (1999) Correlation of basal ganglia magnetic resonance spectroscopy with Apgar score in perinatal asphyxia. Arch Neurol 56:1476–1481

    PubMed  CAS  Google Scholar 

  • Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79(Spec no. 1):S16–26

    PubMed  CAS  Google Scholar 

  • Pels P, Ozturk-Isik E, Swanson MG, Vanhamme L, Kurhanewicz J, Nelson SJ, Van Huffel S (2006) Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis. NMR Biomed. 19:188–197

    PubMed  CAS  Google Scholar 

  • Port RE, Bachert P, Semmler W (1991) Kinetic modeling of in vivo-nuclear magnetic resonance spectroscopy data: 5-fluorouracil in liver and liver tumors. Clin Pharmacol Ther 49:497–505

    PubMed  CAS  Google Scholar 

  • Presant CA, Wolf W, Waluch V, Wiseman C, Kennedy P, Blayney D, Brechner RR (1994) Association of intratumoral pharmacokinetics of fluorouracil with clinical response. Lancet 343:1184–1187

    PubMed  CAS  Google Scholar 

  • Presant CA, Wolf W, Waluch V, Wiseman CL, Weitz I, Shani J (2000) Enhancement of fluorouracil uptake in human colorectal and gastric cancers by interferon or by high-dose methotrexate: An in vivo human study using noninvasive 19F-magnetic resonance spectroscopy. J Clin Oncol 18:255–261

    PubMed  CAS  Google Scholar 

  • Prescott DM, Charles HC, Sostman HD, Dodge RK, Thrall DE, Page RL, Tucker JA, Harrelson JM, Leopold KA, Oleson JR, et al. (1994) Therapy monitoring in human and canine soft tissue sarcomas using magnetic resonance imaging and spectroscopy. Int J Radiat Oncol Biol Phys. 28:415-423

    PubMed  CAS  Google Scholar 

  • Pretlow TG, Harris BF, Bradley E, Bueschen AJ, Lloyd KL, Pretlow TP (1985) Enzyme activities ion prostatic carcinoma related to Gleason grades. Cancer Res 45:442–446

    PubMed  Google Scholar 

  • Preul MC, Caramanos Z, Leblanc R, Villemure JG, Arnold DL (1998) Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed 11:192–200

    PubMed  CAS  Google Scholar 

  • Provencer SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Google Scholar 

  • Provencer SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Google Scholar 

  • Radda GK, Rajagopalan B, Taylor DJ (1989) Biochemistry in vivo: an appraisal of clinical magnetic resonance spectroscopy. Magn Res Quart 5:122–151

    CAS  Google Scholar 

  • Redmond OM, Bell E, Stack IP, Dervan PA, Carney DN, Hurson BJ, Ennis JT (1992) Tissue characterization and assessment of preoperative chemotherapeutic response in musculoskeletal tumors by in vivo 31P magnetic resonance spectroscopy. Magn Reson Med 27:226–237

    PubMed  CAS  Google Scholar 

  • Redmond OM, Stack JP, O’Connor NG, Carney DN, Dervan PA, Hurson BJ, Ennis JT (1992) 31P MRS as an early prognostic indicator of patient response to chemotherapy. Magn Reson Med 25:30–44

    PubMed  CAS  Google Scholar 

  • Renshaw PF, Haselgrove JC, Leigh JS, Chance B (1985) In vivo NMRI of lithium. Magn Reson Med 2:512–516

    PubMed  CAS  Google Scholar 

  • Renshaw PF, Wicklund S (1988) In vivo measurement of lithium in humans by NMRS. Biol Psychiatry 23:465–475

    PubMed  CAS  Google Scholar 

  • Rexroth W, Semmler W, Gückel F, Stadtlander M, Weikker H, Hild R, van Kaick G (1989) Assessment of muscular metabolism in peripheral arterial occlusive disease using 31P nuclear magnetic resonance. Klin Wochenschr 67:804–812

    PubMed  CAS  Google Scholar 

  • Roden M, Petersen KF, Shulman GI (2001) Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Prog Horm Res 56:219–37

    PubMed  CAS  Google Scholar 

  • Roelants-Van Rijn AM, van der Grond J, de Vries LS, Groenendaal F (2001) Value of 1H MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res 49:356–62

    PubMed  CAS  Google Scholar 

  • Ross BD, Radda GK, Gadian GD, Rocker G, Esiri M, Falconer-Smith J (1981) Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. N Engl J Med 304:1338–1342

    PubMed  CAS  Google Scholar 

  • Ross BD (1991) Biochemical consideration in 1H-spectroscopy. Glutamate and glutamine; myoinositol and related metabolites. NMR Biomed 4:59–63

    PubMed  CAS  Google Scholar 

  • Ross BD, Jacobson S, Villamil F, Korula J, Kreis R, Ernst T, Shonk T, Moats R (1994) Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 193:457–463

    PubMed  CAS  Google Scholar 

  • Ross BD, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10:191–247

    PubMed  CAS  Google Scholar 

  • Ross BD, Danielsen ER, Bluml S (1996) Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy? Dig Dis 14(Suppl 1):30–39

    PubMed  Google Scholar 

  • Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172

    PubMed  CAS  Google Scholar 

  • Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Tan J (1998) In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 8:809–822

    PubMed  CAS  Google Scholar 

  • Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84

    PubMed  CAS  Google Scholar 

  • Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369

    PubMed  CAS  Google Scholar 

  • Sala E, Noyszewski EA, Campistol JM, Marrades RM, Dreha S, Torregrossa JV, Beers JS, Wagner PD, Roca J (2001) Impaired muscle oxygen transfer in patients with chronic renal failure. Am J Physiol 280:R1240–R1248

    CAS  Google Scholar 

  • Sappey-Marinier D, Hubesch B, Matson GB, Weiner MW (1992) Decreased phosphorus metabolite concentrations and alkalosis in chronic cerebral infarction. Radiology 182:29–34

    PubMed  CAS  Google Scholar 

  • Saunders DE (2000) MR spectroscopy in stroke. Br Med Bull 56:334–345

    PubMed  CAS  Google Scholar 

  • Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM (1999) Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 9:711–716

    PubMed  CAS  Google Scholar 

  • Sauter R, Müller S, Weber H (1987) Localization in in vivo 31P NMR spectroscopy by combining surface coils and slice-selective saturation. J Magn Reson 75:167–173

    CAS  Google Scholar 

  • Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, Zaloudek CJ, Nelson SJ, Carroll PR, Kurhanowicz J (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 213:473–480

    PubMed  CAS  Google Scholar 

  • Schick F, Duda S, Durk H, Bunse M, Lutz O, Claussen CD (1994) Eosinophilia-myalgia syndrome: findings at MR imaging and proton spectroscopy of the lower leg. Magn Reson Imaging 12:513–522

    PubMed  CAS  Google Scholar 

  • Schick F (1996) Bone marrow NMR in vivo. J Progr NMR Spectroscopy 29:169–227

    CAS  Google Scholar 

  • Schiebler ML, Miyamoto KK, White M, Maygarden SJ, Mohler JL (1993) In vitro high resolution 1H-spectroscopy of the human prostate: benign prostatic hyperplasia, normal peripheral zone and adenocarcinoma. Magn Reson Med 29:285–291

    PubMed  CAS  Google Scholar 

  • Schilling A, Gewiese B, Stiller D, Römer T, Wolf KJ (1990) Einfluss der Ernährungslage auf das 31P MR Spektrum der gesunden Leber. RoFo 153:369–372

    PubMed  CAS  Google Scholar 

  • Schlemmer HP, Bachert P, Semmler W, Hohenberger P, Schlag P, Lorenz WJ, van Kaick G (1994) Drug monitoring of 5-fluorouracil: In vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. Magn Reson Imaging 12:497–511

    PubMed  CAS  Google Scholar 

  • Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B, Wollensack P, Zuna I, Knopp MV, Weidauer H, Wannenmacher M, van Kaick G (1999) Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res 59:2363–2369

    PubMed  CAS  Google Scholar 

  • Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G (2001) Evaluation of suspicious brain lesions after stereotactic radiotherapy of brain tumors using proton MR spectroscopy. AJNR Am J Neuroradiol 2001, 22:1316–1324

    CAS  Google Scholar 

  • Schlemmer HP, Sawatzki T, Sammet S, Dornacher I, Bachert P, van Kaick G, Waldherr R, Seitz HK (2005) Hepatic phospholipids in alcoholic liver disease assessed by proton-decoupled 31P magnetic resonance spectroscopy. J Hepatol. 42:752–759

    PubMed  Google Scholar 

  • Segebarth CM, Grivegnée AR, Luyten PR, den Hollander AJ (1989) Quantitative 31P NMR spectroscopy of phosphate metabolism in the human liver following fructose administration. In: Proceedings 8th Annual Meeting SMRM, Amsterdam, vol. 1, p 263

    Google Scholar 

  • Semmler W, Gademann G, Schlag P, Bachert-Baumann P, Zabel H-J, Lorenz WJ, van Kaick G (1988a) Impact of hyperthermic regional perfusion therapy on cell metabolism of malignant melanoma monitored by 31P MR spectroscopy. Magn Reson Imaging 6:335–340

    PubMed  CAS  Google Scholar 

  • Semmler W, Gademann G, Bachert-Baumann P, Zabel H-J, Lorenz WJ, van Kaick G (1988b) Monitoring human tumor response to therapy by means of P-31 MR. spectroscopy. Radiology 166:533–539

    PubMed  CAS  Google Scholar 

  • Semmler W, Bachert-Baumann P, Gückel F, Ermark F, Schlag P, Lorenz WJ, van Kaick G (1990) Realtime follow-up of 5-fluorouracil metabolism in the liver of tumor patients by means of F-19 MR spectroscopy. Radiology 174:141–145

    PubMed  CAS  Google Scholar 

  • Shimizu H, Kumabe T, Shirane R, Yoshimoto T (2000) Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 21:659–665

    PubMed  CAS  Google Scholar 

  • Shine N, Palladino MA, Patton JS, Deisseroth A, Karczmar GS, Weiner MW (1989) Early metabolic response to TNF in mouse sarcoma. A 31P nuclear magnetic resonance study. Cancer Res 49:2123–2127

    PubMed  CAS  Google Scholar 

  • Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD (1995) Probable Alzheimer disease diagnosis with proton MR spectroscopy. Radiology 195:65–72

    PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL (2001a) The “glycogen shunt” in exercising muscle: a role for glycogen in muscle energetics and fatigue. Proc Natl Acad Sci U S A 98:457–461

    PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL (2001b) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48

    PubMed  CAS  Google Scholar 

  • Sibtain NA, Howe FA, Saunders DE (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 62:109–119

    PubMed  CAS  Google Scholar 

  • Sijens PE, Wijrdeman HK, Moerland MA, Bakker CJ, Vermeulen JW, Luyten PR (1988) Human breast cancer in vivo: H-1 and P-31 MR spectroscopy at 1.5 T. Radiology 169:615–620

    PubMed  CAS  Google Scholar 

  • Sijens PE, Levendag PC, Vecht CJ, van Dijk P, Oudkerk M (1996) 1H MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 9:65–71

    PubMed  CAS  Google Scholar 

  • Slotboom J, Boesch C, Kreis R (1998) Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 39:899–911

    PubMed  CAS  Google Scholar 

  • Smith TA, Glaholm J, Leach MO, Machin L, McCready VR (1991) The effect of intra-tumour heterogeneity on the distribution of phosphorus-containing metabolites within human breast tumours: an in vitro study using 31P NMR spectroscopy. NMR Biomed 4:262–267

    PubMed  CAS  Google Scholar 

  • Soares JC, Boada F, Spencer S, Mallinger AG, Dippold CS, Wells KF, Frank E, Keshavan MS, Gershon S, Kupfer DJ (2001) Brain lithium concentrations in bipolar disorder patients: preliminary 7Li magnetic resonance studies at 3 T. Biol Psychiatry 49:437–43

    PubMed  CAS  Google Scholar 

  • Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: Application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831

    PubMed  CAS  Google Scholar 

  • Sostman HD, Charles HC, Rockwell S, Leopold K, Beam C, Madwed D, Dewhirst M, Cofer G, Moore D, Burn R, et al. (1990) Soft-tissue sarcomas: detection of metabolic heterogeneity with P-31 MR spectroscopy. Radiology. 176:837-843

    PubMed  CAS  Google Scholar 

  • Sostman HD, Prescott DM, Dewhirst MW, Dodge RK, Thrall DE, Page RL, Tucker JA, Harrelson JM, Reece G, Leopold KA, et al. (1994) MR imaging and spectroscopy for prognostic evaluation in soft-tissue sarcomas. Radiology 190:269-275

    PubMed  CAS  Google Scholar 

  • Stanley JA, Drost DJ, Williamson PC, Thompson RT (1995) The use of a priori knowledge to quantify short echo in vivo 1H MR spectra. Magn Reson Med 34:17–24

    PubMed  CAS  Google Scholar 

  • Star-Lack JM, Adalsteinsson E, Gold GE, Ikeda DM, Spielman DM (2000) Motion correction and lipid suppression for 1H magnetic resonance spectroscopy. Magn Reson Med 43:325–30

    PubMed  CAS  Google Scholar 

  • Steudel A, Harder T, Träber F, Gieseke J (1990) 31P- Spektroskopie der Leber unter Polycheniotherapie von Hodentumoren. In: Lissner J, Doppman JL, Margulis AR (eds) MR ‘89. Deutscher Ärzte, Cologne, pp 261–264

    Google Scholar 

  • Swanson MG, Vigneron DB, Tran TK, Kurhanewicz J (2001) Magnetic resonance imaging and spectroscopic imaging of prostate cancer. Cancer Invest 19:510–523

    PubMed  CAS  Google Scholar 

  • Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L,Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264

    PubMed  CAS  Google Scholar 

  • Tallan HH (1957) Studies on the distribution of N-acetyl-l-aspartic acid in the brain. J Biol Chem 224:41–45

    PubMed  CAS  Google Scholar 

  • Tallan HH, Moore S, Stein WH (1956) N-Acetyl-l-aspartic acid in the brain. J Biol Chem 224:41–45

    Google Scholar 

  • Tamiya T, Kinoshita K, Ono Y, Matsumoto K, Furuta T, Ohmoto T (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338

    PubMed  CAS  Google Scholar 

  • Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabanas ME, Simonetti AW, Gajewicz W, Calvar J,Capdevila A, Wilkins PR, Bell BA, Remy C, Heerschap A, Watson D, Griffiths JR, Arus C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434

    PubMed  CAS  Google Scholar 

  • Taylor DJ (2000) Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol 4:481–502

    PubMed  CAS  Google Scholar 

  • Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci 127:198–206

    PubMed  CAS  Google Scholar 

  • Taylor-Robinson SD, Sargentoni J, Bell JD, Saeed N, Changani KK, Davidson BR, Rolles K, Burroughs AK, Hodgson HJ, Foster CS, Cox IJ (1997) In vivo and in vitro hepatic 31P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver 17:198–209

    PubMed  CAS  Google Scholar 

  • Taylor-Robinson SD, Sargentoni J, Bell JD, Thomas EL, Marcus CD, Changani KK, Saeed N, Hodgson HJ, Davidson BR, Burroughs AK, Rolles K, Foster CS, Cox IJ (1998) In vivo and in vitro hepatic phosphorus-31 magnetic resonance spectroscopy and electron microscopy in chronic ductopenic rejection of human liver allografts. Gut 42:735–43

    PubMed  CAS  Google Scholar 

  • Thomas MA, Binesh N, Yue K, CeBruhl N (2001) Volume-localized two-dimensional correlated magnetic resonance spectroscopy of human breast cancer. J Magn Reson Imaging 14:181–186

    PubMed  CAS  Google Scholar 

  • Thompson CH, Irish AB, Kemp GJ, Taylor DJ, Radda GK (1997) The effect of propionyl l-carnitine on skeletal muscle metabolism in renal failure. Clin Nephrol 47:372–378

    PubMed  CAS  Google Scholar 

  • Tien RD, Lai PH, Smith JS, Lazeyras F (1996) Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR Am J Roentgenol 167:201–209

    PubMed  CAS  Google Scholar 

  • Trump ME, Hanstock CC, Allen PS, Gheorghiu D, Hochachka PW (2001) An 1H MRS evaluation of the phosphocreatine/creatine pool (tCr) in human muscle. Am J Physiol 280:R889–R896

    CAS  Google Scholar 

  • Tunggal B, Hofmann K, Stoffel W (1990) In vivo 13C nuclear magnetic resonance investigations of choline metabolism in rabbit brain. Magn Reson Med 13:90–102

    PubMed  CAS  Google Scholar 

  • Tyszka JM, Silverman JM (1998) Navigated single-voxel proton spectroscopy of the human liver. Magn Reson Med 39:1–5

    PubMed  CAS  Google Scholar 

  • Vallee JP, Lazeyras F, Sostman HD, Smith SR, Butterly DW, Spritzer CE, Charles HC (1996) Proton-decoupled phosphorus-31 magnetic resonance spectroscopy in the evaluation of native and well-functioning transplanted kidneys. Acad Radiol 3:1030–1037

    PubMed  CAS  Google Scholar 

  • van der Graaf M, van den Boogert HJ, Jager GJ, Barentsz JO, Heerschap A (1999) Human prostate: multisectional proton MR spectroscopic imaging with single spin-echo sequence—preliminary experiences. Radiology 213:919–925

    PubMed  Google Scholar 

  • van der Grond J van der, Laven JS, te Velde ER, Mali WP (1991) Abnormal testicular function: potential of P-31 MR spectroscopy in diagnosis. Radiology 179:433–436

    PubMed  Google Scholar 

  • van der Grond J van der (1995) Diagnosing testicular function using 31P magnetic resonance spectroscopy: a current review. Hum Reprod Update 1:276–83

    PubMed  Google Scholar 

  • Vanhamme L, Sundin T, Hecke PV, Huffel SV (2001) MR spectroscopy quantitation: a review of time-domain methods. NMR Biomed 14:233–246

    PubMed  CAS  Google Scholar 

  • Van Rijen, Luyten PR, Berkelbach van der Sprenkel JW, Kraaier V, van Huffelen AC, Tulleken CAF, den Hollander JA (1989) 1H and 31P NMR measurement of cerebral lactate, high-energy phosphate levels, and pH in humans during voluntary hyperventilation: associated EEG, capnographic, and Doppler findings. Magn Res Med 10:182–193

    Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Veech RL (1991) The metabolism of lactate. NMR Biomed 4:53–58

    PubMed  CAS  Google Scholar 

  • Weiss RG, Bottomley PA, Christopher JH, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323:1593–1600

    PubMed  CAS  Google Scholar 

  • Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B (2006) The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res 71:149–58

    PubMed  CAS  Google Scholar 

  • Wolf W, Albright MJ, Silver MS, Weber H, Reichardt U, Sauter R (1987) Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. Magn Reson Imaging 5:165–169

    PubMed  CAS  Google Scholar 

  • Wolf W, Presant CA, Waluch V (1992) 19F MRS of 5-fluorouracil in human tumors: clinical correlations of trapping with therapeutic response. In: Proceedings of the 11th Annual Meeting SMRM, Berlin, vol. 1, p 58

    Google Scholar 

  • Wolf W, Waluch V, Presant CA (1998) Non-invasive 19F-NMRS of 5-fluorouracil in pharmacokinetics and pharmacodynamic studies. NMR Biomed 11:380–387

    PubMed  CAS  Google Scholar 

  • Wolf W, Presant CA, Waluch V (2000) 19F MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 41:55–74

    PubMed  CAS  Google Scholar 

  • Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 92:15–23

    PubMed  CAS  Google Scholar 

  • Yeung DK, Cheung HS, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results. Radiology 220:40–46

    PubMed  CAS  Google Scholar 

  • Yu KK, Scheidler J, Hricak H, Vigneron DB, Zaloudek CJ, Males RG, Nelson SJ, Carroll PR, Kurhanowicz J (1999) Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic. Radiology 213:481–488

    PubMed  CAS  Google Scholar 

  • Zandt HJA in ’t, van der Graaf M, Heerschap A (2001) Common processing of in vivo MR spectra. NMR Biomed 14:224–232

    Google Scholar 

  • Zlatkin MB, Lenkinski RE, Shinkwin M, Schmidt RG, Daly JM, Holland GA, Frank T, Kressel HY (1990) Combined MR imaging and spectroscopy of bone and soft tissue tumors. J Comput Assist Tomogr. 14:1-10

    PubMed  CAS  Google Scholar 

  • de Graaf Robin A (1999) In vivo NMR Spectroscopy: principles and techniques. Wiley, New York

    Google Scholar 

  • Keeler J (2005) Understanding NMR spectroscopy. Wiley, New York

    Google Scholar 

  • Kimmich, R (1997) NMR tomography, diffusometry, relaxometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Liney G (2005) MRI from A to Z. Cambridge University Press, Cambridge

    Google Scholar 

  • Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlemmer, HP., Semmler, W. (2008). Clinical Spectroscopy. In: Reiser, M., Semmler, W., Hricak, H. (eds) Magnetic Resonance Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29355-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29355-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29354-5

  • Online ISBN: 978-3-540-29355-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics