Skip to main content

Biologics in Targeted Cancer Therapy

  • Chapter
Biologics in General Medicine

Abstract

Treatment of cancer should be as potent as possible to completely destroy the tumor. However, precisely this aggressiveness often causes severe side effects. Indeed, due to the side effects, some promising therapeutics cannot be applied systemically. In addition, therapeutics like cytokines which physiologically function in a para- or autocrine fashion require a locally enhanced level to exert their effect appropriately. An elegant way to accumulate therapeutic agents in the tumor is by their conjugation/fusion to tumor-specific antibodies. This chapter presents an overview with preclinical and clinical data for different agents which were turned into targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GP, Schier R, Marshall K, Wolf EJ, McCall AM, Marks JD, Weiner LM (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res 58:485–490

    PubMed  CAS  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  PubMed  CAS  Google Scholar 

  • Arndt MA, Krauss J, Vu BK, Newton DL, Rybak SM (2005) A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J Immunother 28:245–251

    Article  PubMed  CAS  Google Scholar 

  • Bagshawe KD (1987) Antibody directed enzymes revive anticancer prodrugs concept. Br J Cancer 56:531–532

    PubMed  CAS  Google Scholar 

  • Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183:2361–2366

    Article  PubMed  CAS  Google Scholar 

  • Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LF, Helfrich W (2005a) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380–3388

    PubMed  CAS  Google Scholar 

  • Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W (2005b) Simultaneous inhibition of EGFR signaling and enhanced activation of TRAIL-R-mediated apoptosis induction by an scFv: sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280(11):10025–10033

    Article  PubMed  CAS  Google Scholar 

  • Brignole C, Marimpietri D, Pagnan G, Paolo DD, Zancolli M, Pistoia V, Ponzoni M, Pastorino F (2005) Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD(2) immunoliposome: immune cell-mediated anti-tumor activities. Cancer Lett 228:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496

    PubMed  CAS  Google Scholar 

  • Bruenke J, Barbin K, Kunert S, Lang P, Pfeiffer M, Stieglmaier K, Niethammer D, Stockmeyer B, Peipp M, Repp R, Valerius T, Fey GH (2005) Effective lysis of lymphoma cells with a stabilized bispecific single-chain Fv antibody against CD19 and FcgammaRIII (CD16). Br J Haematol 130:218–228

    Article  PubMed  CAS  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  PubMed  CAS  Google Scholar 

  • Chester K, Pedley B, Tolner B, Violet J, Mayer A, Sharma S, Boxer G, Green A, Nagl S, Begent R (2004) Engineering antibodies for clinical applications in cancer. Tumour Biol 25: 91–98

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo C, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R, D’Alessio G (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874

    Article  PubMed  Google Scholar 

  • Deguchi T, Chu TM, Leong SS, Horoszewicz JS, Lee CL (1986) Effect of methotrexate-monoclonal anti-prostatic acid phosphatase antibody conjugate on human prostate tumor. Cancer Res 46:3751–3755

    PubMed  CAS  Google Scholar 

  • Dela Cruz JS, Trinh KR, Morrison SL, Penichet ML (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J Immunol 165:5112–5121

    Google Scholar 

  • Dela Cruz JS, Lau SY, Ramirez EM, De Giovanni C, Forni G, Morrison SL, Penichet ML (2003) Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine 21:1317–1326

    Article  CAS  Google Scholar 

  • Eggermont AM, De Wilt JH, Ten Hagen TL (2003) Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 4:429–437

    Article  PubMed  Google Scholar 

  • Francis RJ, Sharma SK, Springer C, Green AJ, Hope-Stone LD, Sena L, Martin J, Adamson KL, Robbins A, Gumbrell L, O’Malley D, Tsiompanou E, Shahbakhti H, Webley S, Hochhauser D, Hilson AJ, Blakey D, Begent RH (2002) A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br J Cancer 87:600–607

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE (2004)Reducing the immune response to immunotoxin. Clin Cancer Res 10:13–15

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE (2005) Newanti-T cell immunotoxins for the clinic. Leuk Res 29:249–251

    Article  PubMed  Google Scholar 

  • Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–334

    PubMed  CAS  Google Scholar 

  • Gao Y, Xiong D, Yang M, Liu H, Peng H, Shao X, Xu Y, Xu C, Fan D, Qin L, Yang C, Zhu Z (2004) Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody. Leukemia 18:513–520

    Article  PubMed  CAS  Google Scholar 

  • Gillies SD, Young D, Lo KM, Foley SF, Reisfeld RA (1991) Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma 10:347–356

    Article  PubMed  CAS  Google Scholar 

  • Grillo-Lopez AJ, Hedrick E, Rashford M, Benyunes M (2002) Rituximab: ongoing and future clinical development. Semin Oncol 29:105–112

    Article  PubMed  CAS  Google Scholar 

  • Grosse-Hovest L, Hartlapp I, Marwan W, Brem G, Rammensee HG, Jung G (2003) A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol 33:1334–1340

    Article  PubMed  CAS  Google Scholar 

  • Hexham JM, Dudas D, Hugo R, Thompson J, King V, Dowling C, Neville DM, Jr, Digan ME, Lake P (2001) Influence of relative binding affinity on efficacy in a panel of anti-CD3 scFv immunotoxins. Mol Immunol 38:397–408

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister V, Vetter C, Schrama D, Brocker EB, Becker JC (2005) Tumor stroma-associated antigens for anti-cancer immunotherapy. Cancer Immunol Immunother:1–14

    Google Scholar 

  • Hoogenboom HR, Volckaert G, Raus JC (1991) Construction and expression of antibody-tumor necrosis factor fusion proteins. Mol Immunol 28:1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem

    Google Scholar 

  • Johnson JR, Ford CH, Newman CE, Woodhouse CS, Rowland GF, Simmonds RG (1981) A vindesine-anti-CEA conjugate cytotoxic for human cancer cells in vitro. Br J Cancer 44:472–475

    PubMed  CAS  Google Scholar 

  • Keilholz U, Stoter G, Punt CJ, Scheibenbogen C, Lejeune F, Eggermont AM (1997) Recombinant interleukin-2-based treatments for advanced melanoma: the experience of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. Cancer J Sci Am 3Suppl 1:S22–S28

    PubMed  Google Scholar 

  • King DM, Albertini MR, Schalch H, Hank JA, Gan J, Surfus J, Mahvi D, Schiller JH, Warner T, Kim K, Eickhoff J, Kendra K, Reisfeld R, Gillies SD, Sondel P (2004) Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol 22:4463–4473

    Article  PubMed  CAS  Google Scholar 

  • Kipriyanov SM, Cochlovius B, Schafer HJ, Moldenhauer G, Bahre A, Le Gall F, Knackmuss S, Little M (2002) Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol 169:137–144

    PubMed  CAS  Google Scholar 

  • Ko YJ, Bubley GJ, Weber R, Redfern C, Gold DP, Finke L, Kovar A, Dahl T, Gillies SD (2004) Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J Immunother 27:232–239

    Article  PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    Article  PubMed  Google Scholar 

  • Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA (2004) Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res 64:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Manusama ER, Nooijen PT, Ten Hagen TL, Van Der Veen AH, De Vries MW, De Wilt JH, Van Ijken MG, Marquet RL, Eggermont AM (1998) Tumor necrosis factor-alpha in isolated perfusion systems in the treatment of cancer: the Rotterdam preclinical-clinical program. Semin Surg Oncol 14:232–237

    Article  PubMed  CAS  Google Scholar 

  • Mattijssen V, De Mulder PH, De Graeff A, Hupperets PS, Joosten F, Ruiter DJ, Bier H, Palmer PA, Van den B P (1994) Intratumoral PEG-interleukin-2 therapy in patients with locoregionally recurrent head and neck squamous-cell carcinoma. Ann Oncol 5:957–960

    PubMed  CAS  Google Scholar 

  • Moro M, Gasparri AM, Pagano S, Bellone M, Tornaghi P, Veglia F, Corti A, Casorati G, Dellabona P (1999) Induction of therapeutic T-cell immunity by tumor targeting with soluble recombinant B7-immunoglobulin costimulatory molecules. Cancer Res 59:2650–2656

    PubMed  CAS  Google Scholar 

  • Nabhan C, Rundhaugen LM, Riley MB, Rademaker A, Boehlke L, Jatoi M, Tallman MS (2005) Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leuk Res 29:53–57

    Article  PubMed  CAS  Google Scholar 

  • Neal ZC, Yang JC, Rakhmilevich AL, Buhtoiarov IN, Lum HE, Imboden M, Hank JA, Lode HN, Reisfeld RA, Gillies SD, Sondel PM (2004) Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin Cancer Res 10: 4839–4847

    Article  PubMed  CAS  Google Scholar 

  • Ou X, Tan T, He L, Li Y, Li J, Kuang A (2005) Antitumor effects of radioiodinated antisense oligonuclide mediated by VIP receptor. Cancer Gene Ther 12:313–320

    Article  PubMed  CAS  Google Scholar 

  • Papac RJ (2001) Origins of cancer therapy. Yale J Biol Med 74:391–398

    PubMed  CAS  Google Scholar 

  • Penichet ML, Harvill ET, Morrison SL (1998) An IgG3-IL-2 fusion protein recognizing amurine B cell lymphoma exhibits effective tumor imaging and antitumor activity. J Interferon Cytokine Res 18:597–607

    PubMed  CAS  Google Scholar 

  • Posey JA, Khazaeli MB, Bookman MA, Nowrouzi A, Grizzle WE, Thornton J, Carey DE, Lorenz JM, Sing AP, Siegall CB, LoBuglio AF, Saleh MN (2002) A phase I trial of the singlechain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8:3092–3099

    PubMed  CAS  Google Scholar 

  • Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC (1996) Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 56:1707–1712

    PubMed  CAS  Google Scholar 

  • Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G, Pfizenmaier K, Wajant H (2003) Generation of a FasLbased proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J Biol Chem 278:32077–32082

    Article  PubMed  CAS  Google Scholar 

  • Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, Senter PD, Wahl AF (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    PubMed  CAS  Google Scholar 

  • Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  Google Scholar 

  • Schrama D, thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxinalpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121

    Article  PubMed  CAS  Google Scholar 

  • Schrama D, Xiang R, Eggert AO, Andersen MH, Pedersen LO, Kämpgen E, Schumacher TN, Reisfeld RA, Becker JC (2004) Shift from systemic to site-specific memory by tumor-targeted IL-2. J Immunol 172:5843–5850

    PubMed  CAS  Google Scholar 

  • Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  PubMed  CAS  Google Scholar 

  • Senter PD, Springer CJ (2001) Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev 53:247–264

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Bagshawe KD, Begent RH (2005) Advances in antibody-directed enzyme prodrug therapy. Curr Opin Investig Drugs 6:611–615

    PubMed  CAS  Google Scholar 

  • Shimizu M, Yoshimoto T, Nagata S, Matsuzawa A (1996) A trial to kill tumor cells through Fas (CD95)-mediated apoptosis in vivo. Biochem Biophys Res Commun 228:375–379

    Article  PubMed  CAS  Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    PubMed  CAS  Google Scholar 

  • Tallman MS, Gilliland DG, Rowe JM (2005) Drug therapy of acute myeloid leukemia. Blood 106:1154–1163

    Article  PubMed  CAS  Google Scholar 

  • Timmer T, de Vries EG, de Jong S (2002) Fas receptor-mediated apoptosis: a clinical application? J Pathol 196:125–134

    Article  PubMed  CAS  Google Scholar 

  • Trepel M, Arap W, Pasqualini R (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 6:399–404

    Article  PubMed  CAS  Google Scholar 

  • Van Pel A, Boon T (1982) Protection against a nonimmunogenicmouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci U S A 79:4718–4722

    Article  PubMed  Google Scholar 

  • Wang XB, Zhao BF, Zhao Q, Piao JH, Liu J, Lin Q, Huang HL (2004) A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J Biochem (Tokyo) 135:555–565

    CAS  Google Scholar 

  • Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    PubMed  CAS  Google Scholar 

  • Youn YS, Na DH, Yoo SD, Song SC, Lee KC (2005) Carbohydrate-specifically polyethylene glycol-modified ricin Achain with improved therapeutic potential. Int J Biochem Cell Biol 37:1525–1533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrama, D., Becker, J.C. (2007). Biologics in Targeted Cancer Therapy. In: Boehncke, WH., Radeke, H.H. (eds) Biologics in General Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29018-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29018-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29017-9

  • Online ISBN: 978-3-540-29018-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics