Skip to main content

Deloopings in Algebraic K-Theory

  • Reference work entry
Handbook of K-Theory

Abstract

A crucial observation in Quillen’s definition of higher algebraic K-theory was that the right way to proceed is to define the higher K-groups as the homotopy groups of a space ([23]). Quillen gave two different space level models, one via the plus construction and the other via the Q-construction. The Q-construction version allowed Quillen to prove a number of important formal properties of the K-theory construction, namely localization, devissage, reduction by resolution, and the homotopy property. It was quickly realized that although the theory initially revolved around a functor K from the category of rings (or schemes) to the category Top of topological spaces, K in fact took its values in the category of infinite loop spaces and infinite loop maps ([1]). In fact, K is best thought of as a functor not to topological spaces, but to the category of spectra ([2, 11]). Recall that a spectrum is a family of based topological spaces {X i } i≥0, together with bonding maps σ i : X i ΩX i+1, which can be taken to be homeomorphisms. There is a great deal of value to this refinement of the functor K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.F., Infinite loop spaces. Annals of Mathematics Studies, 90. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.

    Google Scholar 

  2. Adams, J.F. Stable homotopy and generalised homology. Reprint of the 1974 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1995.

    Google Scholar 

  3. Anderson, Douglas R. and Hsiang, Wu-Chung, Extending combinatorial PL structures on stratified spaces. Invent. Math. 32 (1976), no. 2, 179–204.

    Article  MATH  MathSciNet  Google Scholar 

  4. Anderson, Douglas R. and Hsiang, Wu Chung, Extending combinatorial piecewise linear structures on stratified spaces. II. Trans. Amer. Math. Soc.260 (1980), no. 1, 223–253.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bass, Hyman, Algebraic K -theory. W.A. Benjamin, Inc., New York-Amsterdam 1968.

    Google Scholar 

  6. Carlsson, Gunnar and Pedersen, Erik Kjaer, Controlled algebra and the Novikov conjectures for K - and L -theory. Topology 34 (1995), no. 3, 731–758.

    Article  MATH  MathSciNet  Google Scholar 

  7. Carlsson, Gunnar and Pedersen, Erik Kjaer, ˇCech homology and the Novikov conjectures for K - and L -theory. Math. Scand. 82 (1998), no. 1, 5–47.

    MATH  MathSciNet  Google Scholar 

  8. Carlsson, Gunnar, Bounded K -theory and the assembly map in algebraic K -theory. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 5–127, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  9. Carlsson, Gunnar, On the algebraic K -theory of infinite product categories, K-Theory 9 (1995), no. 4, 305–322.

    Article  MATH  MathSciNet  Google Scholar 

  10. Connell, E.H., Approximating stable homeomorphisms by piecewise linear ones. Ann. of Math. (2) 78 (1963) 326–338.

    Article  MathSciNet  Google Scholar 

  11. Elmendorf, A.D., Kriz, I., Mandell, M.A., and May, J.P., Modern foundations for stable homotopy theory. Handbook of algebraic topology, 213–253, North-Holland, Amsterdam, 1995.

    Google Scholar 

  12. Farrell, F.T. and Wagoner, J.B., Infinite matrices in algebraic K -theory and topology. Comment. Math. Helv. 47 (1972), 474–501.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferry, Steven C., Ranicki, Andrew, and Rosenberg, Jonathan. A history and survey of the Novikov conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 7–66, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  14. Gersten, S.M., On the spectrum of algebraic K -theory. Bull. Amer. Math. Soc.78 (1972), 216–219.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gillet, Henri and Grayson, Daniel R., The loop space of the Q -construction. Illinois J. Math. 31 (1987), no. 4, 574–597.

    MATH  MathSciNet  Google Scholar 

  16. Grayson, Daniel, Higher algebraic K -theory. II (after Daniel Quillen). Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pp. 217–240. Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976.

    Google Scholar 

  17. Jardine, J.F., The multiple Q -construction. Canad. J. Math.39 (1987), no. 5, 1174–1209.

    MATH  MathSciNet  Google Scholar 

  18. Karoubi, M., Foncteurs dérivés et K-théorie, Séminaire Heidelberg-Sarrebruck-Strasbourg sur la K-théorie, 107–187, Lecture Notes in Math., 136, Springer, Berlin, 1970.

    Google Scholar 

  19. Lück, W. and Reich, H., the Baum-Connes and Farrell-Jones conjectures in K and L-theory, appears in this volume.

    Google Scholar 

  20. May, J.P., The spectra associated to permutative categories. Topology 17 (1978), no. 3, 225–228.

    Article  MATH  MathSciNet  Google Scholar 

  21. May, J.P., Multiplicative infinite loop space theory. J. Pure Appl. Algebra 26 (1982), no. 1, 1–69.

    Article  MATH  MathSciNet  Google Scholar 

  22. Pedersen, Erik K. and Weibel, Charles A., A nonconnective delooping of algebraic K -theory. Algebraic and geometric topology (New Brunswick, N.J., 1983), 166–181, Lecture Notes in Math., 1126, Springer, Berlin, 1985.

    Google Scholar 

  23. Quillen, Daniel, Higher algebraic K -theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.

    Google Scholar 

  24. Ranicki, Andrew, On the Novikov conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 272–337, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  25. Schlichting, Marco, Delooping the K -theory of exact categories, to appear, Topology.

    Google Scholar 

  26. Segal, Graeme, Categories and cohomology theories. Topology 13 (1974), 293–312.

    Article  MATH  MathSciNet  Google Scholar 

  27. Shimakawa, Kazuhisa, Multiple categories and algebraic K -theory. J. Pure Appl. Algebra 41 (1986), no. 2-3, 285–304.

    Article  MATH  MathSciNet  Google Scholar 

  28. Thomason, R.W., Homotopy colimits in the category of small categories. Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109.

    Article  MATH  MathSciNet  Google Scholar 

  29. Thomason, R.W. and Trobaugh, Thomas, Higher algebraic K -theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.

    Google Scholar 

  30. Wagoner, J.B., Delooping classifying spaces in algebraic K -theory. Topology 11 (1972), 349–370.

    Article  MATH  MathSciNet  Google Scholar 

  31. Waldhausen, Friedhelm, Algebraic K -theory of generalized free products. I, II. Ann. of Math. (2) 108 (1978), no. 1, 135–204.

    Article  MathSciNet  Google Scholar 

  32. Waldhausen, Friedhelm, Algebraic K -theory of generalized free products. III, IV. Ann. of Math. (2) 108 (1978), no. 2, 205–256.

    Article  MathSciNet  Google Scholar 

  33. Waldhausen, Friedhelm, Algebraic K -theory of spaces. Algebraic and geometric topology (New Brunswick, N.J., 1983), 318–419, Lecture Notes in Math., 1126, Springer, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Carlsson, G. (2005). Deloopings in Algebraic K-Theory. In: Friedlander, E., Grayson, D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27855-9_1

Download citation

Publish with us

Policies and ethics