Skip to main content

A Construction Method for Optimally Universal Hash Families and Its Consequences for the Existence of RBIBDs

(Extended Abstract)

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

  • 569 Accesses

Abstract

We introduce a method for constructing optimally universal hash families and equivalently RBIBDs. As a consequence of our construction we obtain minimal optimally universal hash families, if the cardinalities of the universe and the range are powers of the same prime. A corollary of this result is that the necessary condition for the existence of an RBIBD with parameters (v,k,λ), namely v mod k = λ(v–1) mod (k–1) = 0, is sufficient, if v and k are powers of the same prime. As an application of our construction, we show that the k-MAXCUT algorithm of Hofmeister and Lefmann [9] can be implemented such that it has a polynomial running time, in the case that the number of vertices and k are powers of the same prime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atici, M., Stinson, D.R.: Universal hashing and multiple authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 16–30. Springer, Heidelberg (1996)

    Google Scholar 

  2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn., vol. 1. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Bierbrauer, J.: Universal hashing and geometric codes. Designs, Codes and Cryptography 11, 207–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colbourn, C.J., Dinitz, J.H. (eds.): The CRC Handbook of Combinatorial Designs, 1st edn. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  6. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable randomized algorithm for the closest-pair problem. Journal of Algorithms 25, 19–51 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer, F.: Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on Computing 23, 738–761 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access time. Journal of the Association for Computing Machinery 31, 538–544 (1984)

    MATH  MathSciNet  Google Scholar 

  9. Hofmeister, T., Lefmann, H.: A combinatorial design approach to MAXCUT. Random Structures and Algorithms 9, 163–173 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holland, M., Gibson, G.: Parity declustering for continuous operation in redundant disk arrays. In: Proceedings of the 5th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 23–35 (1992)

    Google Scholar 

  11. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. Theoretical Computer Science 107, 121–133 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, V., Tuza, Z.: Linear-time approximation algorithms for the max cut problem. Combinatorics, Probability and Computing 2, 201–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sarwate, D.V.: A note on universal classes of hash functions. Information Processing Letters 10, 41–45 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schwabe, E.J., Sutherland, I.M.: Flexible usage of redundancy in disk arrays. Theory of Computing Systems 32, 561–587 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stinson, D.R.: Combinatorial techniques for universal hashing. Journal of Computer. Journal of Computer and System Sciences 48, 337–346 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes and Cryptography 4, 369–380 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woelfel, P. (2004). A Construction Method for Optimally Universal Hash Families and Its Consequences for the Existence of RBIBDs. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics