Skip to main content

The propagation mechanism of cellular detonation

  • Conference paper
  • First Online:
Shock Waves

Abstract

The present lecture examined the available experimental and numerical results on cellular detonations. It is concluded that apart from special mixtures where the detonation is only “weakly unstable”, the classical shock ignition and thermal explosion mechanism cannot describe the physical and chemical processes in the highly complex reaction zone of unstable detonations in general. Turbulence will play an important role in both the ignition and the combustion mechanism in the reaction zone of highly unstable detonations. Vorticity and turbulence generation from shock-shock, shock-vortex, shock-density interactions and the baroclinic torque mechanism are considered important in contrast to the velocity gradient shear flow mechanism of turbulence production in incompressible flows. It is recommended that the experimental determination of the hydrodynamic thickness, its correlation with chemical, thermodynamic and transport properties of the mixture and the formulation of a turbulence model to describe the steady mean flow properties of cellular detonation structure are important problems in detonation research for the immediate future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. Bone, R.P. Eraser: Phil Trans Roy. Soc. A 228, 197 (1929), A 230, 363 (1932); W. Bone, R.P. Eraser and W.H. Wheeler: ibid. Phil Trans Roy. Soc. A 235, 29 (1936)

    Article  ADS  Google Scholar 

  2. G.B. Kistiakowsky, H.T. Knight, M. Malin: J. Chem Phys. 20(6), (1952)

    Google Scholar 

  3. B. Levitt, D.F. Hornig: J. Chem. Phys. 36, 216 (1962) Also M. Castri, L.Schwartz, B. Myers and D. Hornig: In: 9th Comb. Sym (Int’l), 1962, pp. 470–473. The Combustion Institute

    Article  ADS  Google Scholar 

  4. D.R. White: Phys. Fluids 1(4), (1961)

    Google Scholar 

  5. J. Fay, G. Opel: J. Chem. Phys. 29, 955 (1958) See also J. Fay: In: 8th Comb. Sym. (Int’l), 1962, pp. 30–40 (1962). The Combustion Institute

    Article  ADS  Google Scholar 

  6. M.I. Radulescu, J.H.S. Lee: Comb, and Flame 131, 29 (2002)

    Article  Google Scholar 

  7. G. Dupré, O. Penaldi, J.H.S. Lee, R. Faufas: Progress in Astroniantics and Aeronautics 114, 248 (1988)

    Google Scholar 

  8. A. Teodorczyk, J.H.S. Lee: Shock Waves 4, 225 (1995)

    Article  ADS  Google Scholar 

  9. J.H.S. Lee: Dynamics of Exothermicity, ed. J. Ray Bowen & Combustion Science & Technology 2, 321 (1996)

    Google Scholar 

  10. J.H.S. Lee, R. Solukhin, A.K. Oppenheim: Astronautica Acta 14, 565 (1969)

    Google Scholar 

  11. M. Weber, H. Olivier: Shock Waves 13(5), 351 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Tsinghua University Press and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J.H.S. (2005). The propagation mechanism of cellular detonation. In: Jiang, Z. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27009-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27009-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22497-6

  • Online ISBN: 978-3-540-27009-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics