Skip to main content

Comparison of Linear and Non-linear Soft Tissue Models with Post-operative CT Scan in Maxillofacial Surgery

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

A Finite Element model of the face soft tissue is proposed to simulate the morphological outcomes of maxillofacial surgery. Three modelling options are implemented: a linear elastic model with small and large deformation hypothesis, and an hyperelastic Mooney-Rivlin model. An evaluation procedure based on a qualitative and quantitative comparison of the simulations with a post-operative CT scan is detailed. It is then applied to one clinical case to evaluate the differences between the three models, and with the actual patient morphology. First results shows in particular that for a “simple” clinical procedure where stress is less than 20%, a linear model seams sufficient for a correct modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delingette, H.: IEEE: Special Issue on Surgery Simulation, pp. 512–523 (1998)

    Google Scholar 

  2. Teschner, M., Girod, S., Girod, B.: Optimization approaches for soft-tissue prediction in craniofacial surgery simulation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1183–1190. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Keeve, E., Girod, S., Kikinis, R., Girod, B.: Deformable Modeling of Facial Tissue for Craniofacial Surgery Simulation. Journal of Computer Aided Surgery 3, 228–238 (1998)

    Article  Google Scholar 

  4. Koch, R., Roth, S., Gross, M., Zimmermann, A., Sailer, H.: A framework for facial surgery simulation. Technical Report 326, ETH Zurich (1999)

    Google Scholar 

  5. Zachow, S., Gladiline, E., Hege, H., Deuflhard, P.: Finite element simulation for soft tissue prediction. In: Lemke, H. (ed.) Computer Assisted Radiology and Surgery, CARS 2000, pp. 23–28. Elsevier, Amsterdam (2000)

    Google Scholar 

  6. Gladilin, E., Zachow, S., Deuflhard, P., Hege, H.C.: On constitutive modeling of soft tissue for the long-term prediction of cranio-maxillofacial surgery outcome. In: Lemke, H. (ed.) Computer Assisted Radiology and Surgery, CARS 2003. International Congress Series, vol. 1256, pp. 346–348. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  7. Vandewalle, P., Schutyser, F., Van Cleynenbreugel, J., Suetens, P.: Modelling of facial soft tissue growth for maxillofacial surgery planning environments. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 27–37. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Chabanas, M., Luboz, V., Payan, Y.: Patient-specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis 7, 131–151 (2003)

    Article  Google Scholar 

  9. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  10. Zienkiewicz, O., Taylor, R.: The Finite Element Method. In: Basic formulation and linear problems, MacGraw-Hill Book Company (UK) Limited, Maidenhead (1989)

    Google Scholar 

  11. Picinbono, G., Lombardo, J.C., Delingette, H., ayache, N.: Anisotropic elasticity anf force extrapolation to improve realism of surgery simulation. In: IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 596–602 (2000)

    Google Scholar 

  12. Mooney, M.: A Theory of Large Elastic Deformation. Journal of Applied Physics 11, 582–592 (1940)

    Article  Google Scholar 

  13. Gerard, J., Wilhelms-Tricarico, R., Perrier, P., Payan, Y.: A 3D dynamical biomechanical tongue model to study speech motor control. Recent Research Developments in Biomechanics, 49–64 (2003)

    Google Scholar 

  14. Chabanas, M., Marécaux, C., Payan, Y., Boutault, F.: Models for Planning and Simulation in Computer Assisted Orthognatic Surgery. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, p. 315. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors beteween surfaces using the Hausdorff distance. In: IEEE International Conference in Mutlimedia and Expo (ICME), pp. 705–708 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chabanas, M., Payan, Y., Marécaux, C., Swider, P., Boutault, F. (2004). Comparison of Linear and Non-linear Soft Tissue Models with Post-operative CT Scan in Maxillofacial Surgery. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics