Skip to main content

Reliability Models in Data Communication Systems

  • Chapter
Stochastic Models in Reliability and Maintenance

Summary

We survey the data transmission models in a communication system from the viewpoint of reliability: data transmission often fails owing to errors generated by disconnections, noises or distortions in a communication line. To protect against such errors and to ensure accurate transmission of data, the following three schemes of error-control procedures are mainly used: (i) Forward-error-correction (FEC) scheme, (ii) automatic-repeat-request (ARQ) scheme, and (iii) hybrid ARQ schemes, which combines FEC with ARQ. ARQ schemes are mainly employed in data transmission systems to achieve high reliability of communication. Further, three protocols of stopand-wait (SW), go-back-N (GBN) and selective-repeat (SR) have been well known in ARQ schemes. In this chapter, we formulate three typical stochastic models of SW ARQ, SR ARQ and hybrid ARQ schemes, and discuss analytically and numerically optimal policies to improve the data throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz, M. (1987), Telecommunication Networks: Protocols, Modeling and Analysis. Addison Wesley, Massachusetts

    Google Scholar 

  2. I.E.I.C.E. (ed.) (1988), Handbook for Electronics, Information and Communication Engineers. Ohm Publication, Tokyo

    Google Scholar 

  3. Chang, J. F. and Yang, T. H. (1993), “Multichannel ARQ protocols,” IEEE Transactions on Communications, 41, 592–598

    Article  Google Scholar 

  4. Lu, D. L. and Chang, J. F. (1993), “Performance of ARQ protocols in nonindependent channel errors,” IEEE Transactions on Communications, 41, 721–730

    Article  Google Scholar 

  5. Bruneel, H. and Moeneclaey, M. (1986), “On the throughput performance of some continuous ARQ strategies with repeated transmission,” IEEE Transactions on Communications, COM-34, 244–249

    Article  Google Scholar 

  6. Fantacci, R. (1990), “Performance evaluation of efficient continuous ARQ protocols,” IEEE Transactions on Communications, 38, 773–781

    Article  Google Scholar 

  7. Fantacci, R. (1991), “Performance evaluation of some ARQ schemes using efficient modulation techniques and noncoherent detection,” IEEE Transactions on Communications, 39, 445–451

    Article  Google Scholar 

  8. Kim, S. R. and Un, C. K. (1992), “Throughput analysis for two ARQ schemes using combined transition matrix,” IEEE Transactions on Communications, 40, 1679–1683

    Article  Google Scholar 

  9. Hayashida, Y. (1993), “Throughput analysis of tandem-type go-back-N ARQ scheme for satellite communications,” IEEE Transactions on Communications, 41, 1517–1524

    Article  Google Scholar 

  10. Cho, Y. J. and Un, C. K. (1994), “Performance analysis of ARQ error controls under Markovian block error pattern,” IEEE Transactions on Communications, 42, 2051–2061

    Article  Google Scholar 

  11. Yao, Y. D. (1995), “An effective go-back-N ARQ scheme for variable-error-rate channels,” IEEE Transactions on Communications, 43, 20–23

    Article  Google Scholar 

  12. Cam, R. and Leung, C. (1997), “Throughput analysis of some ARQ protocols in the presence of feedback errors,” IEEE Transactions on Communications, 45, 35–44

    Article  Google Scholar 

  13. Miller, M. J. and Lin, S. (1981), “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Transactions on Communications, COM-29, 1307–1315

    Article  Google Scholar 

  14. Wang, Y. M. and Lin, S. (1983), “A modified selective-repeat type-II hybrid ARQ system and its performance analysis,” IEEE Transactions on Communications, COM-31, 593–607

    Article  Google Scholar 

  15. Shacham, N. and Towsley, D. (1991), “Resequencing delay and buffer occupancy in selective repeat ARQ with multiple receivers,” IEEE Transactions on Communications, 39, 928–937

    Article  Google Scholar 

  16. Shacham, N. and Shin, B. C. (1992), “A selective-repeat-ARQ protocol for parallel channels and its resequencing analysis,” IEEE Transactions on Communications, 40, 773–782

    Article  Google Scholar 

  17. Benelli, G. (1993), “Some ARQ protocols with finite receiver buffer,” IEEE Transactions on Communications, 41, 513–523

    Article  Google Scholar 

  18. Benelli, G. (1993), “A selective ARQ protocol with a finite-length buffer,” IEEE Transactions on Communications, 41, 1102–1111

    Article  Google Scholar 

  19. Chang, J. F. and Yang, T. H. (1994), “End-to-end delay of an adaptive selective repeat ARQ protocol,” IEEE Transactions on Communications, 42, 2926–2928

    Article  Google Scholar 

  20. Lin, S. and Yu, P. S. (1982), “A hybrid ARQ scheme with parity retransmission for error control of satellite channels,” IEEE Transactions on Communications, COM-30, 1701–1719

    Article  Google Scholar 

  21. Benelli, G. (1985), “An ARQ scheme with memory and soft error detectors,” IEEE Transactions on Communications, COM-33, 285–288

    Article  Google Scholar 

  22. Kasami, T., Fujiwara, T. and Lin, S. (1986), “A concatenated coding scheme for error control,” IEEE Transactions on Communications, COM-34, 481–488

    Article  Google Scholar 

  23. Krishna, H. and Morgera, S. D. (1987), “A new error control scheme for hybrid ARQ systems,” IEEE Transactions on Communications, COM-35, 981–989

    Article  Google Scholar 

  24. Kallel, S. (1990), “Analysis of a type II hybrid ARQ scheme with code combining,” IEEE Transactions on Communications, 38, 1133–1137

    Article  Google Scholar 

  25. Kallel, S. and Haccoun, D. (1990), “Generalized type II hybrid ARQ scheme using punctured convolutional coding,” IEEE Transactions on Communications, 38, 1938–1946

    Article  Google Scholar 

  26. Kallel, S. and Haccoun, D. (1991), “Sequential decoding with an efficient partial retransmission ARQ strategy,” IEEE Transactions on Communications, 39, 208–213

    Article  Google Scholar 

  27. Wicker, S. B. (1991), “Adaptive rate error control through the use of diversity combining and majority-logic decoding in a hybrid-ARQ protocol,” IEEE Transactions on Communications, 39, 380–385

    Article  Google Scholar 

  28. Kousa, M. A. and Rahman, M. (1991), “An adaptive error control system using hybrid ARQ schemes,” IEEE Transactions on Communications, 39, 1049–1057

    Article  Google Scholar 

  29. Lin, M. C. and Guu, M. Y. (1991), “The performance analysis of a concatenated ARQ scheme using parity retransmissions,” IEEE Transactions on Communications, 39, 1869–1874

    Article  Google Scholar 

  30. Rice, M. D. and Wicker, S. B. (1992), “Modified majority logic decoding of cyclic codes in hybrid-ARQ systems,” IEEE Transactions on Communications, 40, 1413–1417

    Article  Google Scholar 

  31. Kallel, S. (1992), “Sequential decoding with an efficient incremental redundancy ARQ scheme,” IEEE Transactions on Communications, 40, 1588–1594

    Article  Google Scholar 

  32. Benelli, G. (1992), “A new method for the integration of modulation and channel coding in an ARQ protocol,” IEEE Transactions on Communications, 40, 1594–1606

    Article  Google Scholar 

  33. Benelli, G. (1993), “New ARQ protocols using concatenated codes,” IEEE Transactions on Communications, 41, 1013–1019

    Article  Google Scholar 

  34. Kallel, S. (1994), “Efficient hybrid ARQ protocols with adaptive forward error correction,” IEEE Transactions on Communications, 42, 281–289

    Article  Google Scholar 

  35. Wicker, S. B. and Bartz, M. J. (1994), “Type-II hybrid-ARQ protocols using punctured MDS codes,” IEEE Transactions on Communications, 42, 1431–1440

    Article  Google Scholar 

  36. Deng, R. H. (1994), “Hybrid ARQ schemes employing coded modulation and sequence combining,” IEEE Transactions on Communications, 42, 2239–2245

    Article  Google Scholar 

  37. Deng, R. H. and Lin, M. L. (1995), “A type I hybrid ARQ system with adaptive code rates,” IEEE Transactions on Communications, 43, 733–737

    Article  Google Scholar 

  38. Rasmussen, L. K. and Wicker, S. B. (1995), “Trellis-coded, type-I hybrid-ARQ protocols based on CRC error-detecting codes,” IEEE Transactions on Communications, 43, 2569–2575

    Article  Google Scholar 

  39. Towsley, D. (1985), “An analysis of a point-to-multipoint channel using a goback-N error control protocol,” IEEE Transactions on Communications, COM-33, 282–285

    Article  Google Scholar 

  40. Chandran, S. R. and Lin, S. (1992), “Selective-repeat-ARQ scheme for broadcast links,” IEEE Transactions on Communications, 40, 12–19

    Article  Google Scholar 

  41. Deng, R. H. (1993), “Hybrid ARQ schemes for point-to-multipoint communication over nonstationary broadcast channels,” IEEE Transactions on Communications, 41, 1379–1387

    Article  Google Scholar 

  42. Wang, J. L. and Silvester, J. A. (1993), “Optimal adaptive multireceiver ARQ protocols,” IEEE Transactions on Communications, 41, 1816–1829

    Article  Google Scholar 

  43. Sakakibara, K. and Kasahara, M. (1995), “A multicast hybrid ARQ scheme using MDS codes and GMD decoding,” IEEE Transactions on Communications, 43, 2933–2940

    Article  Google Scholar 

  44. Shiozaki, A. (1996), “Adaptive type-II hybrid broadcast ARQ system,” IEEE Transactions on Communications, 44, 420–422

    Article  Google Scholar 

  45. Cam, R. and Leung, C. (1998), “Multiplexed ARQ for time-varying channels—Part I: system model and throughput analysis,” IEEE Transactions on Communications, 46, 41–51

    Article  Google Scholar 

  46. Cam, R. and Leung, C. (1998), “Multiplexed ARQ for time-varying channels—Part II: postponed retransmission modification and numerical results,” IEEE Transactions on Communications, 46, 314–326

    Article  Google Scholar 

  47. Anagnostou, M. E. and Protonotarios, N. E. (1986), “Performance analysis of the selective repeat ARQ protocol,” IEEE Transactions on Communications, COM-34, 127–135

    Article  Google Scholar 

  48. Yoshimoto, M., Takine, T., Takahashi, Y. and Hasegawa, T. (1993), “Waiting time and queue length distributions for go-back-N and selective-repeat ARQ protocols,” IEEE Transactions on Communications, 41, 1687–1693

    Article  Google Scholar 

  49. Lu, D. L. and Chang, J. F. (1989), “Analysis of ARQ protocol via signal flow graphs,” IEEE Transactions on Communications, COM-37, 245–251

    Article  Google Scholar 

  50. Oduol, V. K. and Morgera, S. D. (1993), “Performance evaluation of the Generalized type II hybrid ARQ scheme with noisy feedback on Markov channels,” IEEE Transactions on Communications, 41, 32–40

    Article  Google Scholar 

  51. Djuknic, G. M. and Schilling, D. L. (1994), “Performance analysis of an ARQ transmission scheme for meteor burst communications,” IEEE Transactions on Communications, 42, 268–271

    Article  Google Scholar 

  52. Rice, M. (1994), “Application of generalized minimum distance decoding to hybrid-ARQ error control,” IEEE Transactions on Communications, 42, 640–647

    Article  Google Scholar 

  53. Zorzi, M. and Rao, R. R. (1996), “On the use of renewal theory in the analysis of ARQ protocols,” IEEE Transactions on Communications, 44, 1077–1081

    Article  Google Scholar 

  54. Nakagawa, T., Yasui, K. and Sandoh, H. (1993), “An optimal policy for a data transmission system with intermittent faults,” The Transactions of the Institute of Electronics, Information and Communication Engineers, J76-A, 1201–1206 (in Japanese)

    Google Scholar 

  55. Yasui, K., Nakagawa, T. and Sandoh, H. (1995), “An ARQ policy for a data transmission system with three type of error probabilities,” The Transactions of the Institute of Electronics, Information and Communication Engineers, J78-A, 824–830 (in Japanese)

    Google Scholar 

  56. Nakagawa, T. and Yasui, K. (1989), “Optimal testing-policies for intermittent faults,” IEEE Transactions on Reliability, 38, 577–580

    Article  Google Scholar 

  57. Yasui, K. and Nakagawa, T. (1995), “Reliability considerations of a selective-repeat ARQ policy for a data communication system,” Microelectronics and Reliability, 35, 41–44

    Article  Google Scholar 

  58. Yasui, K. and Nakagawa, T. (1997), “Reliability analysis of a hybrid ARQ system with finite response time,” The Transactions of the Institute of Electronics, Information and Communication Engineers, J80-A, 221–227 (in Japanese)

    Google Scholar 

  59. Yasui, K., Nakagawa, T. and Imaizumi, M. (1998), “Reliability evaluations of hybrid ARQ policies for a data communication system,” International Journal of Reliability, Quality and Safety Engineering, 5, 15–28

    Article  Google Scholar 

  60. Zheng, Q. and Shin, K. G. (1994), “On the ability of establishing real-time channels in point-to-point packet-switched networks,” IEEE Transactions on Communications, 42, 1096–1105

    Article  Google Scholar 

  61. Zheng, Q., Shin, K. G. and Shen, C. (1995), “Real-time communication in ATM networks,” IEICE Transactions of the Institute of Electronics, Information and Communication Engineering, J78-D-I, 639–648

    Google Scholar 

  62. Osaki, S. (1992), Applied Stochastic System Modeling. Springer-Verlag, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yasui, K., Nakagawa, T., Sandoh, H. (2002). Reliability Models in Data Communication Systems. In: Osaki, S. (eds) Stochastic Models in Reliability and Maintenance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24808-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24808-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07725-8

  • Online ISBN: 978-3-540-24808-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics