Skip to main content

Evolutionary Bayesian Network Dynamic Planner for Game RISK

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3005))

Included in the following conference series:

Abstract

Many artificial intelligence problems are susceptible to a goal-directed solution. For some problems, such as dynamic planning and execution, a goal-directed approach may be the only option. Using information available about a desirable state or a measure of acceptability of possible future states, a goal-directed approach determines routes or plans to reach these desirable states. These problems can be categorized as game problems. One such game is RISK. RISK is complex, multi-scaled, and provides a good application for testing a variety of goal-directed approaches. A goal-directed hybrid evolutionary program that plays the RISK game effectively has been developed. This approach advances an understanding of: (1) how to use Bayesian probability to prune combinatorial explosive planning spaces; (2) how to incorporate temporal planning cost in an objective function; and (3) provides a procedure for mapping a problem (i.e., data and knowledge) into a dynamic planning and execution framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taipale, T., Pieska, S., Riekki, J.: Dynamic planning based control of autonomous machine. In: Proceedings on Real-Time Systems, pp. 120–126 (1991)

    Google Scholar 

  2. Levinson, R., Hsu, F.H., Schaeffe, J., Marsland, T.A., Wilkins, D.E.: The role of chess in artificial-intelligence research. ICCA Journal 14(3), 153–161 (1991)

    Google Scholar 

  3. van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: now and in the future. Artificial Intelligence 134, 277–311 (2002)

    Article  MATH  Google Scholar 

  4. Tesauro, G.: Temporal difference learning and TD-Gammon. Communications of the ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  5. Chellapilla, K., Fogel, D.B.: Anaconda defeats Hoyle 6-0: a case study competing an evolved checkers program against commercially available software. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 857–863. IEEE Press, Piscataway (2000)

    Google Scholar 

  6. Sutton, R.S., Barto, A.: Introduction to Reinforcement Learning. MIT Press / Bradford Books, Cambridge, MA (1998)

    Google Scholar 

  7. Fogel, D.B.: The advantages of evolutionary computation. In: Lundh, D., Olsson, B., Narayanan, A. (eds.) Bio-Computing and Emergent Computation, Sköve, Sweden, pp. 1–11. World Scientific Press, Singapore (1997)

    Google Scholar 

  8. Araujo, A.F.R., Braga, A.P.S.: Reward-penalty reinforcement learning scheme for planning and reactive behavior. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1485–1490 (1998)

    Google Scholar 

  9. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial Intelligence 134, 181–199 (2002)

    Article  MATH  Google Scholar 

  10. Dahal, K.P., Burt, G.M., McDonald, J.R., Moyes, A.: A case study of scheduling storage tanks using a hybrid genetic algorithm. IEEE Transactions on Evolutionary Computation 5(3), 283–294 (2001)

    Article  Google Scholar 

  11. William Porto, V.: Using evolutionary programming to optimize the allocation of surveillance assets. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 215–222. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Zydallis, J.B.: Explicit building-block multiobjective genetic algorithms: theory, analysis and development. Dissertation: Air Force Institute of Technology (March 2003)

    Google Scholar 

  13. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  14. Barrufi, R., Milano, M.: Planning and execution in dynamic environments. In: Esposito, F. (ed.) AI*IA 2001. LNCS (LNAI), vol. 2175, pp. 382–387. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Littman, M.L.: Value-function reinforcement learning in Markov games. Journal of Cognitive Systems Research 2, 55–66 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaccaro, J., Guest, C. (2004). Evolutionary Bayesian Network Dynamic Planner for Game RISK. In: Raidl, G.R., et al. Applications of Evolutionary Computing. EvoWorkshops 2004. Lecture Notes in Computer Science, vol 3005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24653-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24653-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21378-9

  • Online ISBN: 978-3-540-24653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics