Skip to main content

Molecular Tiling and DNA Self-assembly

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

We examine hypotheses coming from the physical world and address new mathematical issues on tiling. We hope to bring to the attention of mathematicians the way that chemists use tiling in nanotechnology, where the aim is to propose building blocks and experimental protocols suitable for the construction of 1D, 2D and 3D macromolecular assembly. We shall especially concentrate on DNA nanotechnology, which has been demonstrated in recent years to be the most effective programmable self-assembly system. Here, the controlled construction of supramolecular assemblies containing components of fixed sizes and shapes is the principal objective. We shall spell out the algorithmic properties and combinatorial constraints of “physical protocols”, to bring the working hypotheses of chemists closer to a mathematical formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Adleman, L.M.: Toward a mathematical theory of self-assembly. Technical Report 00-722, Department of Computer Science. University of Southern California (2000)

    Google Scholar 

  3. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimisation problems in self-assembly. In: STOC 2002 Proceedings, Montreal Quebec, Canada (2002)

    Google Scholar 

  4. Aggeli, A., Bell, M., Boden, N., Keen, J.N., Knowles, P.F., McLeish, T.C.B., Pitkeathly, M., Radford, S.E.: Responsive gels formed by the spontaneous selfassembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997)

    Article  Google Scholar 

  5. Ball, P.: Materials Science: Polymers made to measure. Nature 367, 323–324 (1994)

    Article  Google Scholar 

  6. Carbone, A., Gromov, M.: Mathematical slices of molecular biology, La Gazette des Mathématiciens. Numéro Spéciale 88, 11–80 (2001)

    MATH  Google Scholar 

  7. Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. Proceedings of the National Academy of Sciences USA 99, 12577–12582 (2002)

    Article  MathSciNet  Google Scholar 

  8. Carbone, A., Seeman, N.C.: A route to fractal DNA-assembly. Natural Computing 1, 469–480 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carbone, A., Seeman, N.C.: Coding and geometrical shapes in nanostructures: a fractal DNA-assembly. Natural Computing (2003) (in press)

    Google Scholar 

  10. Cohen, S.N., Chang, A.C.Y., Boyer, H.W., Helling, R.B.: Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Science USA 70, 3240–3244 (1973)

    Article  Google Scholar 

  11. Diegelman, A.M., Kool, E.T.: Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Research 26, 3235–3241 (1998)

    Article  Google Scholar 

  12. Du, S.M., Zhang, S., Seeman, N.C.: DNA Junctions, Antijunctions and Mesojunctions. Biochemistry 31, 10955–10963 (1992)

    Article  Google Scholar 

  13. Duhnam, I., Shimizu, N., Roe, B.A., et al.: The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999)

    Article  Google Scholar 

  14. Eichman, B.F., Vargason, J.M., Mooers, B.H.M., Ho, P.S.: The Holliday junction in an inverted repeat DNA sequence: Sequence effects on the structure of four-way junctions. Proceedings of the National Academy of Science USA 97, 3971–3976 (2000)

    Article  Google Scholar 

  15. Felsenfeld, G., Davies, D.R., Rich, A.: Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024 (1957)

    Article  Google Scholar 

  16. Fu, T.-J., Kemper, B., Seeman, N.C.: Endonuclease VII cleavage of DNA double crossover molecules. Biochemistry 33, 3896–3905 (1994)

    Article  Google Scholar 

  17. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Company, New York (1986)

    Google Scholar 

  18. Hartgerink, J.D., Beniash, E., Stupp, S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001)

    Article  Google Scholar 

  19. Huck, I., Lehn, J.M.: Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proceedings of the National Academy of Sciences USA 94, 2106–2110 (1997)

    Article  Google Scholar 

  20. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. Theoretical Computer Science 290, 1557–1579 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jaeger, L., Westhof, E., Leontis, N.B.: TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research 29, 455–463 (2001)

    Article  Google Scholar 

  22. Jonoska, N.: 3D DNA patterns and Computing. In: Carbone, A., Gromov, M., Prusinkiewicz, P. (eds.) Pattern formation in Biology, Vision and Dynamics, pp. 310–324. World Scientific Publishing Company, Singapore (2000)

    Chapter  Google Scholar 

  23. von Kiedrowski, G.: Personal communication (February 2003)

    Google Scholar 

  24. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  25. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by self-assembly of DNA tilings. In: Win-free, E., Gifford, D.K. (eds.) Proc. DNA Based Computers V. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 123–140. American Mathematical Society, Providence (2000)

    Google Scholar 

  26. Lehn, J.M.: Sopramolecular Chemistry. Science 260, 1762–1763 (1993)

    Google Scholar 

  27. Lehn, J.M.: Toward complex matter: Supramolecular chemistry and selforganisation. Proceedings of the National Academy of Science USA 99(8), 4763–4768 (2002)

    Article  Google Scholar 

  28. Liu, F., Sha, R., Seeman, N.C.: Modifying the surface features of two-dimensional DNA crystals. Journal of the American Chemical Society 121, 917–922 (1999)

    Article  Google Scholar 

  29. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121, 5437–5443 (1999)

    Article  Google Scholar 

  30. Mao, C., LaBean, T., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000); Nature Erratum 408, 750–750 (2000)

    Google Scholar 

  31. Qiu, H., Dewan, J.C., Seeman, N.C.: A DNA decamer with a sticky end: the Ccystal structure of d-CGACGATCGT. Journal of Molecular Biology 267, 881–898 (1997)

    Article  Google Scholar 

  32. Reif, J.H.: Local parallel biomolecular computation. In: Rubin, H. (ed.) DNA Based Computers, III. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 48, pp. 217–254. American Mathematical Society, Providence (1999)

    Google Scholar 

  33. Reif, J.H.: Molecular assembly and computation: from theory to experimental demonstrations. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1–21. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembling DNA graphs. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 1–9. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  35. Schnur, J.M.: Lipid tubules: a paradigm for molecularly engineered structures. Science 262, 1669–1676 (1993)

    Article  Google Scholar 

  36. Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)

    Article  Google Scholar 

  37. Seeman, N.C., Kallenbach, N.R.: Design of immobile nucleic acid junctions. Biophysical Journal 44, 201–209 (1983)

    Article  Google Scholar 

  38. Seeman, N.C., Kallenbach, N.R.: Nucleic-acids junctions: a successfull experiment in macromolecular design. In: Stezowski, J.J., Huang, J.L., Shao, M.C. (eds.) Molecular Structure: Chemical Reactivity and Biological Activity, pp. 189–194. Oxford University Press, Oxford (1988)

    Google Scholar 

  39. Seeman, N.C.: DNA engineering and its application to nanotechnology. Trends in Biotech. 17, 437–443 (1999)

    Article  Google Scholar 

  40. Seeman, N.C.: DNA nanotechnology: from topological control to structural control. In: Carbone, A., Gromov, M., Prusinkiewicz, P. (eds.) Pattern formation in Biology, Vision and Dynamics, pp. 310–324. World Scientific Publishing Company, Singapore (2000)

    Google Scholar 

  41. Seeman, N.C.: In the nick of space: Generalized nucleic acid complementarity and the development of DNA nanotechnology. Synlett, 1536–1548 (2000)

    Google Scholar 

  42. Sen, D., Gilbert, W.: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and applications to meiosis. Nature 334, 364–366 (1988)

    Article  Google Scholar 

  43. Sha, R., Liu, F., Millar, D.P., Seeman, N.C.: Atomic force microscopy of parallel DNA branched junction arrays. Chemistry & Biology 7, 743–751 (2000)

    Article  Google Scholar 

  44. Shen, Z.: DNA Polycrossover Molecules and their Applications in Homology Recognition. Ph.D. Thesis, New York University (1999)

    Google Scholar 

  45. Sherman, W.B., Seeman, N.C.: Abstract The design of nucleic acid nanotubes. Appeared in Journal of Biomolecular Structure & Dynamics (2003) (in Preparation), online at http://www.jbsdonline.com/index.cfm?search=seeman&d=3012&c=4096&p11491&do=detail

  46. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  47. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  48. Wang, H.: Proving theorems by pattern recognition. Bell System Tech. J. 40, 1–42 (1961)

    Google Scholar 

  49. Wang, H.: Dominos and the AEA case of the decision problem. In: Proceedings of the Symposium on the Mathematical Theory of Automata, Polytechnic, New York, pp. 23–56 (1963)

    Google Scholar 

  50. Wang, H.: Games, logic and computers. Scientific American, pp. 98–106 (November 1965)

    Google Scholar 

  51. Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674 (1991)

    Article  Google Scholar 

  52. Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991)

    Article  Google Scholar 

  53. Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W., Johnson, J.E.: Topologically linked protein rings in the bacteriophage HK97 caspid. Science 289, 2129–2133 (2000)

    Article  Google Scholar 

  54. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA based computers, Proceedings of a DIMACS workshop, Princeton University, pp. 199–219. AMS Providence (1996)

    Google Scholar 

  55. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  56. Winfree, E.: Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J. Biol. Mol. Struct. Dynamics Conversat. 2, 263–270 (2000)

    Google Scholar 

  57. Zhang, S., Holmes, T., Lockshin, C., Rich, A.: Spontaneous assembly of a selfcomplementary oligopeptide to form a stable macroscopic membrane. Proceeding of the National Academy of Sciences USA 90, 3334–3338 (1993)

    Article  Google Scholar 

  58. Zhang, Y., Seeman, N.C.: A solid-support methodology for the construction of geometrical objects from DNA. J. Am. Chem. Soc. 114, 2656–2663 (1992)

    Article  Google Scholar 

  59. Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994)

    Article  Google Scholar 

  60. Zhang, X., Yan, H., Shen, Z., Seeman, N.C.: Paranemic cohesion of topologicallyclosed DNA molecules. J. Am. Chem. Soc. 124, 12940–12941 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbone, A., Seeman, N.C. (2003). Molecular Tiling and DNA Self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics