Skip to main content

Inverse Blade Design Based on Permeable Wall Concept

  • Chapter
Recent Development of Aerodynamic Design Methodologies

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 65))

Summary

Iterative inverse design methods for compressor and turbine blades, with prescribed Mach number or pressure distribution, are presented. It is explained how the permeable wall concept can be used to define the blade modifications required to obtain the target performances with a small number of iterations. It is shown how the method can be combined with potential flow methods, Euler and Navier Stokes solvers. Each method is illustrated with examples. Advantages and problems are discussed and practical solutions to the existancy problem and mechanical constraints are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer F., Garabedian, P., and Korn, D.: Supercritical Wing Sections, Vol. I, Springer-Verlag, New York, (1972).

    Book  MATH  Google Scholar 

  2. Cantrell, H.N. and Fowler, J.E.: The aerodynamic design of two dimensional turbine cascades for incompressible flows with high speed computer, ASME paper 58-A-141, (1958).

    Google Scholar 

  3. Sanz J.M.: Automated design of controlled diffusion blades, ASME Journal of Turbomachinery, Vol. 110, No 4, pp 540–544, (1988).

    Article  Google Scholar 

  4. Stanitz, J.D.: Design of two dimensional channels with prescribed velocity distributions along the channel walls, NACA TR 1115, (1953).

    Google Scholar 

  5. Schmidt, E.: Computation of supercritical compressor and turbine cascades with a design method for transonic flows, ASME Journal of Engineering for Power, Vol. 102, pp 68–74, (1980).

    Article  Google Scholar 

  6. Varonos, A., Chaviaropoulos, P. and Papailiou K.: A design method for stator cascades with streamsur-faces of revolution using natural coordinates, Inverse Problems in Engineering, Vol. 2, pp.119–139, (1995).

    Article  Google Scholar 

  7. Lighthill, J.M.: A new method of two dimensional aerodynamic design, ARC R&M 2112, (1945).

    Google Scholar 

  8. Volpe, G.: Transonic shock free wing design, Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications, AGARD R 780, Paper 5, (1990).

    Google Scholar 

  9. Papailiou, K.D.: Blade optimization based on boundary layer concepts, von Karman Institute CN 60, (1967).

    Google Scholar 

  10. Vanderplaats, G.N.: Approximation concepts for numerical airfoils optimization, NASA TP-1370, (1979).

    Google Scholar 

  11. Eyi, S. and Lee, D.: High-lift design optimization using the Navier-Stokes equations, AIAA paper 95–0477, (1995).

    Google Scholar 

  12. Thibert, J.J.: One point and multi-point design optimization for airplane and helicopter application, Inverse methods for Airfoil Design for Aeronautical and Turbomachinery Applications, AGARD-R-780, (1990).

    Google Scholar 

  13. Gunzburger, M.D.: Introduction to the mathematical aspects of flow control and optimization, Inverse design and optimization, von Karman Institute LS 1997–05, (1997).

    Google Scholar 

  14. Ta’asan S.: Introduction to shape design and control, Inverse design and optimization, von Karman Institute LS 1997–5, (1997).

    Google Scholar 

  15. Van den Braembussche, R.A., Léonard, O., Nekmouche, L.: Subsonic and transonic blade design by means of analysis codes, Computational Methods for Aerodynamic Design (Inverse) and Optimization, AGARD CP 463, Paper 9, (1989).

    Google Scholar 

  16. Murugesan, K. and Railly, J.W.: Pure design method for aerofoils in cascade, J. Mechanical Engineering Science, Vol. 11, No 5, pp. 454–464, (1969).

    Article  Google Scholar 

  17. Sata, A., Ubaldi, M. and Zunino, P.: Design of axial turbines for mini hydro plants, Fourth International Symposium on Hydro Power Fluid Machinery, ASME FED-Vol. 43, pp. 29–36, (1984).

    Google Scholar 

  18. Van den Braembussche, R.A.: The application of the singularity method to blade-to-blade calculations, Thermodynamics and Fluid Mechanics of Turbomachinery, NATO Advanced Sciences Institute Series, series E: Applied Sciences, No 97A, eds. A.S. Ucer, P. Stow and Ch. Hirsch, pp. 167–191, (1984).

    Google Scholar 

  19. Arts, T.: Workshop on two- and three dimensional calculations in turbine bladings, Numerical Methods for Flows in Turbomachinery Bladings, von Karman Institute LS 1982–05, (1982).

    Google Scholar 

  20. Sanger, N.L. and Shreeve R.P.: Comparison of calculated and experimental cascade performance for controlled diffusion compressor stator blading, ASME Journal of Turbomachinery, Vol. 108, pp. 43–50, (1986).

    Article  Google Scholar 

  21. Bogers P., Breugelmans F.A. and Van den Braembussche R.A.: Design and experimental verification of an optimized compressor blade, paper submitted for presentation at the ASME Gas Turbine conference, (1998).

    Google Scholar 

  22. Léonard, O.: Subsonic and transonic cascade design, Inverse methods for Airfoil Design for Aeronautical and Turbomachinery Applications, AGARD-R-780, paper 7, (1990).

    Google Scholar 

  23. Léonard, O.: Conception et développement d’une méthode inverse de type Euler et application à la génération de grilles d’aubes transsoniques, Ph.D. Thesis, Faculté Polytechnique de Mons & von Karman Institute, (1992).

    Google Scholar 

  24. Léonard, O. and Van den Braembussche, R.A.: Design method for subsonic and transonic cascade with prescribed Mach number distribution, ASME Journal of Turbomachinery, Vol. 114, No 3, pp. 553–560, (1993).

    Article  Google Scholar 

  25. Léonard, O. and Van den Braembussche, R.A.: Inverse design of compressor and turbine blades at transonic flow conditions, ASME Paper 92-GT-430, (1993).

    Google Scholar 

  26. Demeulenaere, A. and Van den Braembussche, R.A.: Inverse design of transonic blades taking into account radius change, von Karman Institute PR 1993–31, (1993).

    Google Scholar 

  27. Van den Braembussche, R.A., Demeulenaere, A. and Borges, J.: Inverse design of radial flow impellers with prescribed velocity distribution, Technology Requirements for Small Gas Turbines, AGARD-CP-537, paper 18, (1993).

    Google Scholar 

  28. Van den Braembussche R.A.: Inverse design methods for axial and radial turbomachines, Numerical methods for flow calculation in turbomachinery, von Karman Institute LS-1994–06, (1994).

    Google Scholar 

  29. Demeulenaere, A. and Van den Braembussche, R.A.: Three-dimensional inverse method for turbomachinery blading design, ASME paper 96-GT-39, (1996).

    Google Scholar 

  30. Demeulenaere, A. and Van den Braembussche, R.A.: Three-dimensional inverse design method for turbine and compressor blades, 3rd. International Symposium on Aerothermodynamics of Internal Flows, Beijing, September (1996).

    Google Scholar 

  31. Meauzé, G.: An inverse time marching method for the definition of cascade geometry, ASME Journal of Engineering for Power, Vol. 104, pp. 650–656, (1982).

    Article  Google Scholar 

  32. Zannetti L. and Larocca F.: Inverse Method for 3D Internal Flows, Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications, AGARD-R-780, paper 8, (1990).

    Google Scholar 

  33. Demeulenaere, A. and Van den Braembussche, R.A.: A new compressor and turbine blade design method based on three-dimensional Euler computations with moving boundaries, VKI preprint 1997–56, (1997).

    Google Scholar 

  34. Demeulenaere, A.: PhD thesis, University of Liege & von Karman Institute, (1997).

    Google Scholar 

  35. Demeulenaere, A.: An Euler and Navier Stokes inverse method for compressor and turbine blade design, Inverse design and optimization, von Karman Institute LS 1997–5, (1997).

    Google Scholar 

  36. Demeulenaere, A. and Van den Braembussche, R.: Application of a three-dimensional inverse method to the design of a centrifugal compressor impeller, 4th National Congress on Theoretical and Applied Mechanics, Leuven, pp. 353–356, (1997).

    Google Scholar 

  37. Demirdzic, I. and Peric, M.: Space conservation law in finite volume calculations of fluid flow, International Journal for Numerical methods in Fluids, Vol. 8, pp. 1037–1050, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  38. Demirdzic, I. and Peric, M.: Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries, International Journal for Numerical methods in Fluids, Vol. 10, pp. 771–790, (1990).

    Article  MATH  Google Scholar 

  39. van Leer, B.: Flux vector splitting for the Euler equations, ICASE, Report No 82–30, (1982).

    Google Scholar 

  40. Giles, M.: Non reflecting boundary conditions for Euler equations calculations, AIAA Journal, Vol. 108, No 12, pp 2050–2058, (1989).

    Google Scholar 

  41. Arts, T., Lambert de Rouvroy, M. and Sieverding, C.H.: Highly loaded transonic linear turbine guide vane cascade LS89, in: Numerical Methods for flows in turbomachinery, von Karman Institute LS 1989–06, May 22–26, (1989).

    Google Scholar 

  42. Han, W., Tan, C., Shi, H., Zhou, M. and Wang, Z.: Effects of leaning and curving of blades with high turning angles on the aerodynamic characteristics of turbine rectangular cascades, ASME Paper 93-GT-296, (1993).

    Google Scholar 

  43. Léonard, O., Rogiest, P. and Delaneye M.: Blade analysis and design using an implicit flow solver, 2nd. European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics, Antwerpen, March 5–7, pp. 331–338, (1997).

    Google Scholar 

  44. Léonard, O. and Demeulenaere, A.: A Navier Stokes inverse method based on moving wall strategy, ASME paper 97-GT-416, (1997).

    Google Scholar 

  45. Demeulenaere, A., Léonard, O. and Van den Braembussche R.: A two-dimensional Navier-Stokes inverse solver for compressor and turbine design, 2nd. European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics, Antwerpen, March 5–7, pp. 339–346, (1997).

    Google Scholar 

  46. Denton, J., Hodson, H.P. and Dominy R.G.: Subsonic turbine cascade LA, in: AGARD-AR-275, (1990).

    Google Scholar 

  47. Deplaen, D. and Van den Braembussche R.A.: Ontwerp van transsone vleugelprofielen bij middel van een inverse Euler methode, von Karman Institute & Luru, afstudeerwerk, (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kozo Fujii George S. Dulikravich

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Van den Braembussche, R.A. (1999). Inverse Blade Design Based on Permeable Wall Concept. In: Fujii, K., Dulikravich, G.S. (eds) Recent Development of Aerodynamic Design Methodologies. Notes on Numerical Fluid Mechanics (NNFM), vol 65. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89952-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89952-1_7

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89954-5

  • Online ISBN: 978-3-322-89952-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics