Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 43))

Abstract

We are concerned with hyperbolic systems of conservation laws

$$ {\partial _t}u + {\partial _x}\int {\left( u \right)} = 0, $$
((1))

where \(D: = \left\{ {\left( {x,t} \right) \in \mathbb{R}\; \times \mathbb{R}\_ + } \right\} \ni \left( {x,t} \right)\xrightarrow{u}u\left( {x,t} \right) \in \Omega \subset {\mathbb{R}^m}\Omega\) , Ω being the open state space, and \(\Omega \ni u\xrightarrow{f}f\left( u \right) \in {\mathbb{R}^m}\) is a nonlinear flux function of class [C 2]m(Ω; ℝm). Without restriction we assume f(0) = 0. We consider the Cauchy problem for (1) with initial function u 0 ∈ [L BV loc]m (ℝ; Ω). A weak solution is a function u∈ [L BV loc]m (D; Ω) for wich

$$\int\limits_D {\left\{ {u{\partial _t}\phi + f\left( u \right){\partial _x}\phi } \right\}} dxdt + \int\limits_\mathbb{R} {\left\{ {{u_0}\left( x \right)\phi \left( {x,0} \right)} \right\}} dx = 0$$

holds for all Ф ∈ C 10 ]m (D; ℝm). Since weak solutions are not uniquely determined we call a solution admissible, if an entropy inequality

$$ {\partial _t}\eta \left( u \right) + {\partial _x}q\left( u \right) \leqslant 0$$
((2))

in the sense of distributions for any entropy pair \(\Omega \ni u\xrightarrow{\eta }\eta \left( u \right) \in \mathbb{R},\Omega \ni u\xrightarrow{q}q\left( u \right) \in \mathbb{R}\) , where η is a strictly convex entropy and q an entropy flux satisfying the compatibility condition

$${\nabla _u}\eta \left( u \right){\nabla _u}f\left( u \right) = {\nabla _u}q\left( u \right)$$
((3))

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.D. Lax. Shock Waves and Entropy. in: Contributions to Nonlinear Functional Analysis, Hrsg.: E.H. Zarantonello, Academic Press, New York — San FranciscoLondon, (1971).

    Google Scholar 

  2. M.E. Schonbeck. Second-Order Conservative Schemes and the Entropy Condition. Math. Comp. 44, 31–38, (1985).

    Article  MathSciNet  Google Scholar 

  3. E. Tadmor. The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws L. Math. Comp. 49, 91–103, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. Th. Sonar. Entropy Production in Second-Order Three-Point Schemes. Accepted for publication in Numerische Mathematik, (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Donato Francesco Oliveri

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Sonar, T. (1993). Entropy Dissipation in Finite Difference Schemes. In: Donato, A., Oliveri, F. (eds) Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects. Notes on Numerical Fluid Mechanics (NNFM), vol 43. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87871-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87871-7_66

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-07643-6

  • Online ISBN: 978-3-322-87871-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics