Skip to main content

Generalized Filters

  • Chapter
  • First Online:
Generalized Multiresolution Analyses

Part of the book series: Applied and Numerical Harmonic Analysis ((LN-ANHA))

  • 483 Accesses

Abstract

Filters in a GMRA encode the containments V−1 ⊂ V0 and W−1 = δ−1W0 ⊂ V0 as relationships between scaling functions, wavelet functions, and their dilates. Classical filters were defined in \(L^2(\mathbb R)\) in terms of Fourier transforms of these functions, and were used to build MRA’s and orthonormal wavelets with desirable properties. Generalized filters take advantage of the GMRA structure by using the unitary operator given by spectral multiplicity in place of the Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi A., Cabrelli, C., Molter, U.: Wavelets on irregular grids with arbitrary dilation and frame atoms for \(L^2(\mathbb R^d)\). Appl. Comput. Harmon. Anal. 17, 119–140 (2004)

    Google Scholar 

  2. Baggett, L., Courter, J., Merrill, K.: The construction of wavelets from generalized conjugate mirror filters in \(L^2(\mathbb R^n)\). Appl. Comput. Harmon. Anal. 13, 201–223 (2002)

    Google Scholar 

  3. Baggett, L., Jorgensen, P., Merrill, K., Packer, J.: Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46, 1–28 (2005)

    Article  MathSciNet  Google Scholar 

  4. Baggett, L., Jorgensen, P., Merrill, K., Packer, J.: A non-MRA Cr frame wavelet with rapid decay. Acta Appl. Math. 89, 251–270 (2006)

    Article  Google Scholar 

  5. Baggett, L., Furst, V., Merrill, K., Packer, J.: Generalized filters, the low pass condition, and connections to multiresolution analysis. J. Funct. Anal. 257, 2760–2779 (2009)

    Article  MathSciNet  Google Scholar 

  6. Baggett, L., Larsen, N., Merrill, K., Packer, J, Raeburn, I.: Generalized multiresolution analyses with given multiplicity functions. J. Fourier Anal. Appl. 15, 616–633 (2009)

    Article  MathSciNet  Google Scholar 

  7. Benedetto, J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)

    Article  MathSciNet  Google Scholar 

  8. Benedetto, J., Treiber, O.: Wavelet frames: multiresolution analysis and extension principles. In: Wavelet Transforms and Time-Frequency Analysis, pp. 3–36. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  9. Bownik, M.: Riesz wavelets and generalized multiresolution analyses. Appl. Comput. Harmon. Anal. 14, 181–194 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bownik, M., Rzeszotnik, Z.: Construction and reconstruction of tight framelets and wavelets via matrix mask functions. J. Funct. Anal. 256, 1165–1105 (2009)

    Article  MathSciNet  Google Scholar 

  11. Bownik, M., Speegle, D.: Meyer type wavelet bases in \(\mathbb R^2\). J. Approx. Theory 116, 49–75 (2002)

    Article  MathSciNet  Google Scholar 

  12. Bratteli, O., Jorgensen, P.E.T.: Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N. Integr. Equ. Oper. Theory 28, 382–443 (1997)

    MATH  Google Scholar 

  13. Bratteli, O., Jorgensen, P.E.T.: Wavelets Through a Looking Glass. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  14. Calogero, A.: Wavelets on general lattices, associated with general expanding maps of \(\mathbb R^n\). Electron. Res. Announc. Am. Math. Soc. 5, 1–10 (1999)

    Google Scholar 

  15. Cohen, A.: Wavelets and Multiscale Signal Processing. Chapman and Hall, London (1995)

    Book  Google Scholar 

  16. Courter, J.: Construction of dilation d wavelets. Contemp. Math. 247, 183–206 (1999)

    Article  MathSciNet  Google Scholar 

  17. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  18. Esteban, D., Galand, C.: Application of quadrature mirror filters to split band voice coding systems. In: IEEE International Conference on ICASSP’77, Washington D.C., pp. 191–195 (1977)

    Google Scholar 

  19. Furst, V.: A characterization of semiorthogonal Parseval wavelets in abstract Hilbert spaces. J. Geom. Anal. 17, 569–591 (2007)

    Article  MathSciNet  Google Scholar 

  20. Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  21. Hernández, E., Wang, X., Weiss, G.: Smoothing minimally supported frequency wavelets II. J. Fourier Anal. Appl. 3, 23–41 (1997)

    Article  MathSciNet  Google Scholar 

  22. Lawton, W.M.: Tight frames of compactly supported affine wavelets. J. Math. Phys. 31, 1898–1901 (1990)

    Article  MathSciNet  Google Scholar 

  23. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^2(\mathbb R)\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    Google Scholar 

  24. Merrill, K.: Smooth well-localized Parseval wavelets based on wavelet sets in \(\mathbb R^2\). Contemp. Math. 464, 161–175 (2008)

    Google Scholar 

  25. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  26. Meyer, Y.: Wavelets: Algorithms and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    MATH  Google Scholar 

  27. Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Generalized low pass filters and MRA frame wavelets. J. Geom. Anal. 11, 311–342 (2001)

    Article  MathSciNet  Google Scholar 

  28. Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv. Comp. Math. 18, 297–327 (2003)

    MATH  Google Scholar 

  29. Papadakis, M.: Generalized frame multiresolution analysis of abstract Hilbert spaces. In: Benedetto, J., Zayed, A. (eds.) Sampling, Wavelets and Tomography, pp. 179–223. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  30. Ron, A., Shen, Z.: Affine systems in \(L^2(\mathbb R^d)\): the analysis of the analysis operator. J. Fourier Anal. Appl. 3, 408–447 (1997)

    Google Scholar 

  31. Strichartz, R.S.: How to make wavelets. Am. Math. Mon. 100, 539–556 (1993)

    Article  MathSciNet  Google Scholar 

  32. Zalik, R.A.: Riesz bases and multiresolution analyses. Appl. Comput. Harmon. Anal. 7, 315–331 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merrill, K.D. (2018). Generalized Filters. In: Generalized Multiresolution Analyses. Applied and Numerical Harmonic Analysis(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99175-7_5

Download citation

Publish with us

Policies and ethics