Skip to main content

Abstract

In a cancelable iris recognition technique, all enrollment patterns are masked using a transformation function, and the invertibility for obtaining the original data should not be possible. This paper presents an approach for mixing multi-biometric features based on Double Random Phase Encryption (DRPE) to obtain a single protected IrisCode from different IrisCodes based on the Fractional Fourier Transform (FrFT). For the IrisCode generation, two encryption keys (RPM1 and RPM2) are utilized. The RPM2 is suggested to be the right iris feature vector of the same user. As a result, this feature level mixing of two different templates highly increases privacy and slightly enhances performance compared to its original counterpart. This proposed system achieves a high success rate in identification due to the fact that the iris authentication issue has been transformed to a key authentication process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  3. Venugopalan, S., Savvides, M.: How to generate spoofed irises from an iris code template. IEEE Trans. Inf. Forensics Secur. 6(2), 385–395 (2011)

    Article  Google Scholar 

  4. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP. Inf. Secur. 2011, 3 (2011)

    Article  Google Scholar 

  5. Nagar, A., Nandakumar, K., Jain, A.: Multibiometric cryptosystems based on feature-level fusion. IEEE Trans. Inf. Forensics Secur. 7(1), 255–268 (2012)

    Article  Google Scholar 

  6. Rathgeb, C., Busch, C.: Multibiometric template protection: issues and challenges. In: New Trends and Developments in Biometrics, pp. 173–190. InTech (2012)

    Google Scholar 

  7. Nandakumar, K., Jain, A.K.: Biometric template protection: bridging the performance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100 (2015)

    Article  Google Scholar 

  8. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Process. Mag. Spec. Issue Biom. Secur. Priv. 32(5), 54–65 (2015)

    Article  Google Scholar 

  9. Punithavathi, P., Subbiah, G.: Can cancellable biometrics preserve privacy? Biometr. Technol. Today 2017(7), 8–11 (2017)

    Article  Google Scholar 

  10. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. 29(4), 561–572 (2007)

    Article  Google Scholar 

  11. Harjoko, A., Hartati, S., Dwiyasa, H.: A method for iris recognition based on 1D Coiflet wavelet. World Acad. Sci. Eng. Technol. 56, 126–129 (2009)

    Google Scholar 

  12. Zuo, J., Ratha, N.K., Connel, J.H.: Cancelable iris biometric. In: Proceedings of the 19th International Conference on Pattern Recognition, Florida, USA, pp. 1–4 (2008)

    Google Scholar 

  13. Teoh, A.B.J., Ngo, D.C.L., Goh, A.: Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recogn. 37(11), 2245–2255 (2004)

    Article  Google Scholar 

  14. Rathgeb, C., Breitinger, F., Baier, H., Busch, C.: Towards bloom filter-based indexing of iris biometric data. In 15th IEEE International Conference on Biometrics, pp. 422–429 (2015)

    Google Scholar 

  15. Rathgeb, C., Breitinger, F., Busch, C., Baier, H.: On the application of bloom filters to iris biometrics. IET J. Biom. 3(4), 207–218 (2014)

    Article  Google Scholar 

  16. Ouda, O., Tsumura, N., Nakaguchi, T.: On the security of bioencoding based cancelable biometrics. IEICE Trans. Inf. Syst. 94-D(9), 1768–1777 (2011)

    Article  Google Scholar 

  17. Ouda, O., Tsumura, N., Nakaguchi, T.: A reliable tokenless cancelable biometrics scheme for protecting iriscodes. IEICE Trans. Inf. Syst. E93-D(7), 1878–1888 (2010)

    Article  Google Scholar 

  18. Lacharme, P.: Analysis of the iriscodes bioencoding scheme. Int. J. Comput. Sci. Softw. Eng. 6(5), 315–321 (2012)

    Google Scholar 

  19. Hammerle-Uhl, J., Pschernig, E., Uhl, A.: Cancelable iris biometrics using block re-mapping and image warping. In: International Conference on Information Security, Italy, pp. 135–142 (2009)

    Google Scholar 

  20. Jenisch, S., Uhl, A.: Security analysis of a cancelable iris recognition system based on block remapping. In: Proceedings of the IEEE International Conference on Image Processing, Belgium, pp. 3274–3277 (2011)

    Google Scholar 

  21. Tarek, M., Ouda, O., Hamza, T.: Robust cancelable biometrics scheme based on neural networks. IET J. Biom. 5(3), 220–228 (2016)

    Article  Google Scholar 

  22. Tarek, M., Ouda, O., Hamza, T.: Pre-image resistant cancelable biometrics scheme using bidirectional memory model. Int. J. Netw. Secur. 19(4), 498–506 (2017)

    Google Scholar 

  23. Refregier, P., Javidi, B.: Optical image encryption based on input plane and fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)

    Article  Google Scholar 

  24. Joshi, M., Shakher, C., Singh, K.: Color image encryption and decryption for twin images in fractional Fourier domain. Opt. Commun. 281(23), 5713–5720 (2008)

    Article  Google Scholar 

  25. Ozaktas, H.M.: Fractional Fourier domains. Signal Process. 46, 119–124 (1995)

    Article  Google Scholar 

  26. Soliman, N.F., Mohamed, E., Magdi, F., Abd El-Samie, F.E., AbdElnaby, M.: Efficient iris localization and recognition. Optik Int. J. Light Electron Opt. 140, 469–475 (2017)

    Article  Google Scholar 

  27. CASIA-IrisV3 Database. http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp. Accessed Dec 2017

  28. Masek, L.: Recognition of human iris patterns for biometric identification. M.Sc. Thesis, The University of Western Australia (2003)

    Google Scholar 

  29. Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 43, 1016–1026 (2010)

    Article  Google Scholar 

  31. Rahulkar, A.D., Holambe, R.S.: Half-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n. A post classifier. IEEE Trans. IFS 7, 230–240 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa F. Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soliman, R.F., Amin, M., Abd El-Samie, F.E. (2019). On Mixing Iris-Codes. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and Computing, vol 845. Springer, Cham. https://doi.org/10.1007/978-3-319-99010-1_37

Download citation

Publish with us

Policies and ethics