Skip to main content

Tensor Network Renormalization as an Ultra-calculus for Complex System Dynamics

  • Chapter
  • First Online:
Sustainable Interdependent Networks II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 186))

Abstract

In this chapter, following the previous one, we briefly present the modern approach to real-space renormalization group (RG) theory based on tensor network formulations which was developed during the last two decades. The aim of this sequel is to suggest a novel framework based on tensor networks in order to find the fixed points of complex systems via coarse-graining. The main result of RG is that it provides a systematic way to study the collective dynamics of a large ensemble of elements that interact according to a complex underlying network topology. RG explicitly seeks the fixed points of the complex system in the space of interactions and unravels the universality class of the complex system as well as calculates a plethora of important observables. We hope that tensor networks can particularly pave the way for better understanding of the sustainable interdependent networks (Amini et al., Sustainable interdependent networks: from theory to application, 2018) through proposing efficient computational strategies and discovering insightful features of the network behaviors.

“The belief on the part of many that the renormalisability of the universe is a constraint on an underlying Theory of Everything rather than an emergent property is nothing but an unfalsifiable article of faith.”

Laughlin and Pines [32]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P. M., Blaabjerg, F., & Madni, A. M. (2018). Sustainable interdependent networks: From theory to application (Vol. 145). Cham: Springer.

    Google Scholar 

  2. Baker, S. G. (2014). A cancer theory kerfuffle can lead to new lines of research. Journal of the National Cancer Institute, 107(2), dju405.

    Google Scholar 

  3. Bradde, S.& Bialek, W. (2017). PCA meets RG. Journal of Statistical Physics, 167(3–4), 462–475.

    Google Scholar 

  4. Bridgeman, J. C., & Chubb, C. T. (2017). Hand-waving and interpretive dance: An introductory course on tensor networks. Journal of Physics A: Mathematical and Theoretical, 50(22), 223001.

    Article  MathSciNet  Google Scholar 

  5. Butterfield, J. (2011a). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41(6), 1065–1135.

    Article  MathSciNet  Google Scholar 

  6. Butterfield, J. (2011b). Emergence, reduction and supervenience: a varied landscape. Foundations of Physics, 41(6), 920–959.

    Article  Google Scholar 

  7. Butterfield, J. (2014). Reduction, emergence, and renormalization. The Journal of Philosophy, 111(1), 5–49.

    Article  Google Scholar 

  8. Butterfield, J., & Bouatta, N. (2015). Renormalization for philosophers. Metaphysics in Contemporary Physics, 104, 437–485.

    Article  Google Scholar 

  9. Caflisch, R. E., Gyure, M., Merriman, B., Osher, S., Ratsch, C., Vvedensky, D., et al. (1999). Island dynamics and the level set method for epitaxial growth. Applied Mathematics Letters, 12(4), 13–22.

    Article  MathSciNet  Google Scholar 

  10. Cao, T. Y., & Schweber, S. S. (1993). The conceptual foundations and the philosophical aspects of renormalization theory. Synthese, 97(1), 33–108.

    Article  MathSciNet  Google Scholar 

  11. Chaisson, E. J., & Chaisson, E. (2002). Cosmic evolution. Cambridge: Harvard University Press.

    Google Scholar 

  12. Chernet, B., & Levin, M. (2013). Endogenous voltage potentials and the microenvironment: Bioelectric signals that reveal, induce and normalize cancer. Journal of Clinical & Experimental Oncology, 2013(Suppl. 1), S1-002.

    Google Scholar 

  13. Chernet, B. T., & Levin, M. (2014). Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 5(10), 3287.

    Article  Google Scholar 

  14. Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  MathSciNet  Google Scholar 

  15. Claverie, P., & Jona-Lasinio, G. (1986). Instability of tunneling and the concept of molecular structure in quantum mechanics: The case of pyramidal molecules and the enantiomer problem. Physical Review A, 33(4), 2245.

    Article  Google Scholar 

  16. Domínguez, A., Hochberg, D., Martín-García, J., Pérez-Mercader, J., & Schulman, L. (1999). Dynamical scaling of matter density correlations in the universe: An application of the dynamical renormalization group. Arxiv preprint astro-ph/9901208.

    Google Scholar 

  17. Dyson, F. J. (1949). The radiation theories of tomonaga, schwinger, and feynman. Physical Review, 75(3), 486.

    Article  MathSciNet  Google Scholar 

  18. Dyson, F. J. (1949). The s matrix in quantum electrodynamics. Physical Review, 75(11), 1736.

    Article  MathSciNet  Google Scholar 

  19. Efrati, E., Wang, Z., Kolan, A., & Kadanoff, L. P. (2014). Real-space renormalization in statistical mechanics. Reviews of Modern Physics, 86(2), 647.

    Article  Google Scholar 

  20. Evenbly, G. (2017). Algorithms for tensor network renormalization. Physical Review B, 95(4), 045117.

    Article  MathSciNet  Google Scholar 

  21. Evenbly, G., & Vidal, G. (2011). Tensor network states and geometry. Journal of Statistical Physics, 145(4), 891–918.

    Article  MathSciNet  Google Scholar 

  22. Evenbly, G., & Vidal, G. (2015). Tensor network renormalization. Physical Review letters, 115(18), 180405.

    Article  MathSciNet  Google Scholar 

  23. Fisher, M. E. (1974). The renormalization group in the theory of critical behavior. Reviews of Modern Physics, 46(4), 597.

    Article  Google Scholar 

  24. Franklin, A., & Knox, E. (2018). Emergence without limits: The case of phonons. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.

    Google Scholar 

  25. Frisch, U., Hasslacher, & Pomeau, Lattice-gas automata for the navier-stokes equation. Physical Review Letters, 56(14), 1505.

    Google Scholar 

  26. Gibou, F., Ratsch, C., Gyure, M., Chen, S., & Caflisch, R. (2001). Rate equations and capture numbers with implicit islands correlations. Physical Review B, 63(11), 115401.

    Article  Google Scholar 

  27. Goldenfeld, N. (2018). Lectures on phase transitions and the renormalization group. Boca Raton: CRC Press.

    Book  Google Scholar 

  28. Gu, Z.-C., Levin, M., & Wen, X.-G.. Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions. Physical Review B, 78(20), 205116.

    Google Scholar 

  29. Jaffe, L. F., & Nuccitelli, R. (1977). Electrical controls of development. Annual Review of Biophysics and Bioengineering, 6(1), 445–476.

    Article  Google Scholar 

  30. Kadanoff, L. P. (1966). Scaling laws for ising models near t (c). Physics, 2, 263–272.

    Article  MathSciNet  Google Scholar 

  31. Kadanoff, L. P., & Wegner, F. J. (1971). Some critical properties of the eight-vertex model. Physical Review B, 4(11), 3989.

    Article  Google Scholar 

  32. Laughlin, R. B., & Pines, D. (2000). The theory of everything. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 28–31.

    Article  MathSciNet  Google Scholar 

  33. Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends in Cell Biology, 17(6), 261–270.

    Article  Google Scholar 

  34. Levin, M., & Nave, C. P. (2007). Tensor renormalization group approach to two-dimensional classical lattice models. Physical Review Letters, 99(12), 120601.

    Article  Google Scholar 

  35. Longo, G. (2017). The biological consequences of the computational world: Mathematical reflections on cancer biology (2017). arXiv preprint arXiv:1701.08085.

    Google Scholar 

  36. Lund, E. (1925). Experimental control of organic polarity by the electric current. V. The nature of the control of organic polarity by the electric current. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 41(2), 155–190.

    Article  Google Scholar 

  37. Lund, E. J. (1947). Bioelectric fields and growth (Vol. 64). Philadelphia: LWW.

    Google Scholar 

  38. Mathews, A. P. (1903). Electrical polarity in the hydroids. American Journal of Physiology–Legacy Content, 8(4), 294–299.

    Article  Google Scholar 

  39. Mistani, P., Guittet, A., Bochkov, D., Schneider, J., Margetis, D., Ratsch, C., et al. (2018). The island dynamics model on parallel quadtree grids. Journal of Computational Physics, 361, 150–166.

    Article  MathSciNet  Google Scholar 

  40. Mistani, P., Guittet, A., Poignard, C., & Gibou, F. (February 2018). A parallel voronoi-based approach for mesoscale simulations of cell aggregate electropermeabilization. ArXiv e-prints.

    Google Scholar 

  41. Mora, T., & Bialek, W. (2011). Are biological systems poised at criticality? Journal of Statistical Physics, 144(2), 268–302.

    Article  MathSciNet  Google Scholar 

  42. Nagel, E., & Hawkins, D. (1961). The structure of science. American Journal of Physics, 29, 716.

    Article  Google Scholar 

  43. Nakamoto, N., & Takeda, S. (2016). Computation of correlation functions by tensor renormalization group method. Sciece Reports of Kanazawa University, 60, 11–25

    MathSciNet  Google Scholar 

  44. Onuki, A. (2002). Phase transition dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  45. Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349, 117–158.

    Article  MathSciNet  Google Scholar 

  46. Perez-Mercader, J. (2004). Coarsegraining, scaling and hierarchies. In Nonextensive Entropy-Interdisciplinary Applications (pp. 357–376). Oxford: Oxford University Press.

    Google Scholar 

  47. Pietak, A., & Levin, M. (2017). Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. Journal of the Royal Society Interface, 14(134), 20170425 (2017).

    Google Scholar 

  48. Robertson, D., Miller, M. W., & Carstensen, E. L. (1981). Relationship of 60-hz electric-field parameters to the inhibition of growth ofpisum sativum roots. Radiation and Environmental Biophysics, 19(3), 227–233.

    Article  Google Scholar 

  49. Rodriguez-Laguna, J. (2002). Real space renormalization group techniques and applications. arXiv preprint cond-mat/0207340.

    Google Scholar 

  50. Rozenfeld, H. D., Song, C., & Makse, H. A. (2010). Small-world to fractal transition in complex networks: A renormalization group approach. Physical Review Letters, 104(2), 025701.

    Article  Google Scholar 

  51. Ruderman, D. L., & Bialek, W. (1994). Statistics of natural images: Scaling in the woods. In Advances in Neural Information Processing Systems, pp. 551–558.

    Google Scholar 

  52. Schuch, N., Wolf, M. M., Verstraete, F., & Cirac, J. I. (2007). Computational complexity of projected entangled pair states. Physical Review Letters, 98(14), 140506.

    Article  MathSciNet  Google Scholar 

  53. Simon, H. A. (1996). The sciences of the artificial.

    Google Scholar 

  54. Song, C., Havlin, S., & Makse, H. A. (2005). Self-similarity of complex networks. Nature, 433(7024), 392.

    Article  Google Scholar 

  55. Soto, A. M., Longo, G., Miquel, P.-A., Montévil, M., Mossio, M., et al. (2016). Toward a theory of organisms: Three founding principles in search of a useful integration. Progress in Biophysics and Molecular Biology, 122(1), 77–82.

    Article  Google Scholar 

  56. Soto, A. M., & Sonnenschein, C. (2011). The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays, 33(5), 332–340.

    Article  Google Scholar 

  57. Wegscheid, B., Condon, C., & Hartmann, R. K. (2006). Type a and b rnase p rnas are interchangeable in vivo despite substantial biophysical differences. EMBO Reports, 7(4), 411–417 (2006).

    Google Scholar 

  58. Weinberg, S. (1997). What is quantum field theory, and what did we think it is? arXiv preprint hep-th/9702027.

    Google Scholar 

  59. White, S. R. (1992). Density matrix formulation for quantum renormalization groups. Physical Review Letters, 69(19), 2863.

    Article  Google Scholar 

  60. White, S. R. (1993). Density-matrix algorithms for quantum renormalization groups. Physical Review B, 48(14), 10345.

    Article  Google Scholar 

  61. Wilson, K. G. (1971). Renormalization group and critical phenomena. I. Renormalization group and the kadanoff scaling picture. Physical Review B, 4(9), 3174.

    Google Scholar 

  62. Wilson, K. G. (1975). The renormalization group: Critical phenomena and the kondo problem. Reviews of Modern Physics, 47(4), 773.

    Article  MathSciNet  Google Scholar 

  63. Wilson, K. G., & Kogut, J. (1974). The renormalization group and the e expansion. Physics Reports, 12(2), 75–199.

    Article  Google Scholar 

  64. Yang, S., Gu, Z.-C., & Wen, X.-G. (2017). Loop optimization for tensor network renormalization. Physical Review Letters, 118(11), 110504.

    Article  Google Scholar 

  65. Yeong, C. L. Y., & Torquato, S. (1998). Reconstructing random media. Physical Review E, 57, 495–506.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Mistani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistani, P., Pakravan, S., Gibou, F. (2019). Tensor Network Renormalization as an Ultra-calculus for Complex System Dynamics. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks II. Studies in Systems, Decision and Control, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-98923-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98923-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98922-8

  • Online ISBN: 978-3-319-98923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics