Skip to main content

Where Cave Animals Live

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Subterranean habitats form wherever erosion or deposition creates an interconnected system of voids. These systems occur in unconsolidated sediments, in karst, volcanoes, sandstone, and granites, and together they represent one of the most extensive ecosystems on Earth. Their extent depends on the degree of connectivity among the voids, allowing for animal migration and input of nutrients, organic carbon, and oxygen. Sizes of the voids range from microscopic to large caves. Communities composed of specialized cave-adapted animals have developed wherever the habitat is large and old enough to support life. The voids filled with air support terrestrial animals; those filled with water support aquatic animals. Many voids are biphasic, alternating between air and water, and suitable for both terrestrial and aquatic species. Terrestrial habitats are strongly zonal with three main zones recognized based on light, i.e., entrance, twilight, and dark zones. The dark zone is subdivided into a transition, deep, and stagnant air zones based on abiotic parameters. Aquatic habitats vary by source, flow rate, sediment load, physicochemical composition, nutrient availability, and size of the water body. Each microhabitat in both terrestrial and aquatic realms often supports a distinct community of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashmole NP, Oromí P, Ashmole MJ et al (1992) Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biol J Linn Soc 46:207–234

    Article  Google Scholar 

  • Bakalowicz M (1974) Géochimie des eaux d’ aquifères karstiques. 1. Relation entre minéralisation et conductivité. Annales de Spéléologie 29:167–173

    Google Scholar 

  • Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102

    Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  • Bonacci O (1987) Karst hydrology. Springer, Berlin

    Book  Google Scholar 

  • Brancelj A (2015) Jama Velika Pasica – zgodovina, okolje in življenje v njej/The Velika Pasica Cave – The History, Environment and Life in it. Založba ZRC, ZRC SAZU, Nacionalni inštitut za biologijo, Ljubljana

    Google Scholar 

  • Camacho AI (1992) A classification of the aquatic and terrestrial subterranean environment and their associated fauna. In: Camacho AI (ed) The natural history of biospeleology. Monografías del Museo Nacional de Ciencias Naturales. CSIC, Madrid, pp 135–168

    Google Scholar 

  • Christiansen KA (1961) Convergence and parallelism in cave Entomobryinae. Evolution 15:288–301

    Article  Google Scholar 

  • Christiansen K (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537

    Article  Google Scholar 

  • Cornu J-F, Eme D, Malard F (2013) The distribution of groundwater habitats in Europe. Hydrogeol J 21:949–960

    Article  Google Scholar 

  • Culver DC (1970) Analysis of simple cave communities: niche separation and species packing. Ecology 51:949–958

    Article  Google Scholar 

  • Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128

    Article  Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J North Am Benthol Soc 8:18–35

    Article  Google Scholar 

  • Datry T, Malard F, Niederreiter R et al (2003) Video-logging for examining biogenic structures in deep heterogeneous subsurface sediments. CR Acad Sci III-Vie 326:589–597

    Google Scholar 

  • Delay B (1969) Sur le peuplement des circulations d’eau de la zone de percolation temporarire des massifs karstiques. CR Acad Sci III-Vie 268:1917–1920

    Google Scholar 

  • Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from Montane Western North America. PLoS One 5:e10388

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Gibert J (2001) Basic attributes of groundwater ecosystems. In: Griebler C, Danielopol D, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology, a tool for management of water resources. Office for Official Publications of the European Community, Luxembourg, pp 39–52

    Google Scholar 

  • Gibert J, Danielopol DL, Stanford JA (1994) Groundwater ecology. Academic Press, New York

    Google Scholar 

  • Ginet R, Decou V (1977) Initiation à la biologie et à l’écologie souterraines. Jean-Pierre Delarge, Paris

    Google Scholar 

  • Holland RA, Wikelski M, Kümmeth F et al (2009) The secret life of oilbirds: new insights into the movement ecology of a Unique Avian Frugivore. PLoS One 4:e8264

    Article  Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389

    Article  Google Scholar 

  • Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77

    Article  Google Scholar 

  • Howarth FG (1996) A comparison of volcanic and karstic cave communities. In: Oromí P (ed) Proc. 7th International Symposium on Vulcanospeleology, Canary Is., November 1994. Barcelona Forimpres S.A., pp 63–68

    Google Scholar 

  • Howarth FG, James SA, Preston DJ et al (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 11:251–261

    Article  Google Scholar 

  • Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218

    Google Scholar 

  • Jiménez-Valverde A, Gilgado JD, Sendra A et al (2015) Exceptional invertebrate diversity in a scree slope in Eastern Spain. Insect Conserv 19:713–728

    Article  Google Scholar 

  • Jourdan J, Bierbach D, Riesch R et al (2014) Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana. Peer J 2:e490

    Article  Google Scholar 

  • Juberthie C (1983) Introduction, le milieu souterrain: étendue et composition. Mem Biospeol 10:17–65

    Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW et al (2011) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Ladle RJ, Firmino JV, Malhado AC et al (2012) Unexplored diversity and conservation potential of Neotropical hot caves. Conserv Biol 26:978–982

    Article  Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Leruth R (1939) La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mém Musée R Hist Nat Belgique 87:1–506

    Google Scholar 

  • López H, Oromí P (2010) A type of trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiol Notes 2:7–11

    Google Scholar 

  • Malard F, Boutin C, Camacho A et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Thèse Univ. Dijon. Annales de Spéléologie 29:283–332, 29:495–601, 30:21–124

    Google Scholar 

  • Meleg IN, Fiers F, Robu M et al (2012) Distribution patterns of subsurface copepods and the impact of environmental parameters. Limnologica 42:156–164

    Article  Google Scholar 

  • Moldovan OT, Meleg IN, Persoiu A (2012) Habitat fragmentation and its effects on groundwater populations. Ecohydrology 5:445–452

    Article  Google Scholar 

  • Olmi M, Mita T, Guglielmino A (2014) Revision of the Embolemidae of Japan (Hymenoptera: Chrysidoidea), with description of a new genus and two new species. Zootaxa 3793:423–440

    Article  Google Scholar 

  • Peck SB, Finston TL (1993) Galapagos islands troglobites: the questions of tropical troglobites, parapatric distributions with eyed-sister-species, and their origin by parapatric speciation. Mem Biospeol 20:19–37

    Google Scholar 

  • Price J, Johnson KP, Clayton DH (2004) The evolution of echolocation in swiftlets. J Avian Biol 35:135–143

    Article  Google Scholar 

  • Rouch R (1968) Contribution a la connaissance des Harpacticides hypogés (Crustacés—Copépodes). Thèse. Sc. nat. Toulouse. Annales de Spéléologie 23:1

    Google Scholar 

  • Sârbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  Google Scholar 

  • Schmidt SI, Hahn HJ (2012) What is groundwater and what does this mean to fauna? – An opinion. Limnologica 42:1–6

    Article  CAS  Google Scholar 

  • Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865

    Article  Google Scholar 

  • Trontelj P, Gorički S, Polak S et al (2007) Age estimates for some subterranean taxa and lineages in the Dinaric Karst. Acta Carsol 18:183–189

    Google Scholar 

  • Uéno S-I (1987) The derivation of terrestrial cave animals. Zool Sci 4:593–606

    Google Scholar 

  • Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145

    Article  Google Scholar 

Download references

Acknowledgements

OTM acknowledges the financial support from the Romanian Academy and the grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howarth, F.G., Moldovan, O.T. (2018). Where Cave Animals Live. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_3

Download citation

Publish with us

Policies and ethics