Skip to main content

Large Scale Image Retrieval and Its Challenges

  • Chapter
  • First Online:
Composing Fisher Kernels from Deep Neural Models

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 502 Accesses

Abstract

Fisher vector encoding from deep architectures has shown significant improvement in the performance of classification and retrieval tasks. Despite significant benefit of Fisher vectors for classification and retrieval problems, they suffer from the problem of high dimensionality giving rise to computational and storage overhead for large scale learning problems. This chapter provides guidelines for tackling this issue by either deploying feature selection or compression methods. We provide an overview of all the popular feature selection and compression techniques and identify some metrics that can help practitioners identify the appropriateness of each technique used for the cause.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowe, D.: Object recognition from local scale-invariant features. International Conference on Computer Vision (ICCV) 2, 1150–1157 (1999)

    Google Scholar 

  2. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1794–1801. IEEE (2009)

    Google Scholar 

  3. Csurka, G., Dance, C., Bray, C., et al.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision (ECCV), pp. 1–22 (2004)

    Google Scholar 

  4. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: null, p. 1470. IEEE (2003)

    Google Scholar 

  5. Perronnin, F., Sanchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: European Conference on Computer Vision, pp. 143–156. Springer (2010)

    Google Scholar 

  6. Akata, Z., Perronnin, F., Harchaoui, Z., et al.: Good practice in large-scale learning for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 3, 507–520 (2014)

    Article  Google Scholar 

  7. Simonyan, K., Parkhi, O., Vedaldi, A., Zisserman, A.: Fisher vector faces in the wild. In: BMVC, vol. 2, p. 4 (2013)

    Google Scholar 

  8. Holub, A., Welling, M., Perona, P.: Combining generative models and fisher kernels for object class recognition. In: ICCV, pp. 136–143 (2005)

    Google Scholar 

  9. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  10. Sanchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011, 1665–1672 (2011)

    Google Scholar 

  11. Csurka, G., Perronnin, F.: Fisher vectors: beyond bag-of-visual-words image representations. In: Richard, P., Braz, J. (eds.) Computer Vision, Imaging and Computer Graphics Theory and Applications. Communications in Computer and Information Science, vol. 229, pp. 28–42. Springer, Berlin (2011)

    Chapter  Google Scholar 

  12. Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Technical Report RR-8209, INRIA (2013)

    Google Scholar 

  13. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: Proceedings of BMVC, pp. 76.1–76.12. https://doi.org/10.5244/C.25.76 (2011)

  14. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Azim, T.: Fisher kernels match deep models. Electron. Lett. 53(6), 397–399 (2017)

    Article  Google Scholar 

  16. Perronnin, F., Larlus, D.: Fisher vectors meet neural networks: a hybrid classification architecture. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3743–3752 (2015)

    Google Scholar 

  17. Huang, P.S., Avron, H., Sainath, T., et al.: Kernel methods match deep neural networks on TIMIT. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 205–209. IEEE (2014)

    Google Scholar 

  18. Zeiler, M., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)

    Google Scholar 

  19. Yu Zhang, J.W., Cai, J.: Compact representation for image classification: to choose or to compress? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 907–914 (2014)

    Google Scholar 

  20. Chen, S., Liu, H., Zeng, X., et al.: Local patch vectors encoded by fisher vectors for image classification. Information 9(2), 38 (2018)

    Article  Google Scholar 

  21. Fred, A., De Marsico, M.: Pattern recognition applications and methods, pp. 80–98

    Google Scholar 

  22. Oliveira, F., Levkowitz, H.: From visual data exploration to visual data mining: a survey. IEEE Trans. Visual Comput. Graphics 9(3), 378–394 (2003)

    Article  Google Scholar 

  23. Ham, J., Lee, D., Mika, S., et al.: A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the Twenty-first International Conference on Machine Learning, p. 47. ACM (2004)

    Google Scholar 

  24. Maaten, L., Postma, E.: Dimensionality reduction: a comparative. J. Mach. Learn. Res., 66–71 (2009)

    Google Scholar 

  25. Vlachos, M., Domeniconi, C., Gunopulos, D., et al.: Non-linear dimensionality reduction techniques for classification and visualization. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 645–651. ACM (2002)

    Google Scholar 

  26. Jolliffe, I.: Principal component analysis: Wiley online library. Google Scholar (2002)

    Google Scholar 

  27. Torgerson, W.: Multidimensional scaling: I: theory and method. Psychometrika, 401–419 (1952)

    Google Scholar 

  28. Ben-Bassat, M.: Pattern recognition and reduction of dimensionality. Handb. Stat. 1982, 773–910 (1982)

    Article  Google Scholar 

  29. Kira, K., Rendell, L.: A practical approach to feature selection. In: Machine Learning Proceedings 1992, pp. 249–256. Elsevier (1992)

    Google Scholar 

  30. Robnik, M., Kononenko, G.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn., 23–69 (2003)

    Google Scholar 

  31. Koller, D., Sahami, M.: Toward Optimal Feature Selection. Technical report, Stanford InfoLab (1996)

    Google Scholar 

  32. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  33. Hall, M., Smith, L.: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. FLAIRS Conference 1999, 235–239 (1999)

    Google Scholar 

  34. Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell., 273–324 (1997)

    Google Scholar 

  35. Ahmed, S., Azim, T.: Compression techniques for deep fisher vectors. In: ICPRAM, pp. 217–224 (2017)

    Google Scholar 

  36. Ahmed, S., Azim, T.: Condensing Deep Fisher Vectors: To Choose or to Compress? In: ICPRAM. Extended Papers, Series: LNCS, Subseries: Image Processing, Computer Vision, Pattern Recognition, and Graphics, pp. 80–98. Springer, Cham (2017)

    Google Scholar 

  37. Gulgezen, G., Cataltepe, Z., Yu, L.: Stable and accurate feature selection. In: Machine Learning and Knowledge Discovery in Databases, pp. 455–468. Springer, Berlin (2009)

    Google Scholar 

  38. Maaten, L.: Learning a parametric embedding by preserving local structure. In: Artificial Intelligence and Statistics, pp. 384–391 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyaba Azim .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azim, T., Ahmed, S. (2018). Large Scale Image Retrieval and Its Challenges. In: Composing Fisher Kernels from Deep Neural Models. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-98524-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98524-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98523-7

  • Online ISBN: 978-3-319-98524-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics