Skip to main content

Myocardial Small Vessel Disease and Endothelial Dysfunction

  • Chapter
  • First Online:
Comprehensive Cardiovascular Medicine in the Primary Care Setting

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 988 Accesses

Abstract

Health-care providers are often confronted with patients that present with anginal symptoms, but on coronary angiography are found to have nonobstructive coronary artery disease (CAD) (Patel et al., N Engl J Med 362:886–895, 2010). Many times, chest pain in these patients may be attributed to non-cardiac causes, such as musculoskeletal pain or pathology in the gastrointestinal or pulmonary systems. However, myocardial small vessel disease, also called coronary microvascular dysfunction (CMD) or cardiac syndrome X, is an increasingly recognized disorder in those with nonobstructive CAD (Camici and Crea, Eur Heart J 356:830–840, 2007; Crea et al., Eur Heart J 35:1101–1111, 2014; Lanza and Crea, Circulation 121:2317–2325, 2010).

The prevalence of CMD has been estimated to be at least 3–4 million individuals in the United States with a predominance of women (Crea et al., Eur Heart J 35:1101–1111, 2014). Risk factors for CMD are similar to those that predispose to atherosclerosis, including diabetes, hypertension, chronic inflammation, cigarette smoking, dyslipidemia, and insulin resistance (Camici and Crea, Eur Heart J 356:830–840, 2007; Crea et al., Eur Heart J 35:1101–1111, 2014). The pathophysiology of this heterogeneous group of disorders is controversial and likely multifactorial. Proposed mechanisms include endothelial dysfunction (both abnormal response to vasodilators and increased response to vasoconstrictors), smooth muscle hypertrophy, and increased pain perception (Lanza and Crea, Circulation 121:2317–2325, 2010). While those with nonobstructive CAD have previously been considered low risk, emerging evidence suggests higher rates of recurrent angina, ongoing anxiety, reduced exercise tolerance, poorer quality of life, and cardiovascular disease (CVD) events (Jespersen et al., Eur Heart J 33:734–744, 2012; Johnson et al., Circulation 109:2993–2999, 2004; Olson et al., Eur Heart J 24:1506–1514, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patel MR, Peterson ED, Dai D, Brennan JM, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.

    Article  CAS  Google Scholar 

  2. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  CAS  Google Scholar 

  3. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11.

    Article  Google Scholar 

  4. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation. 2010;121(21):2317–25.

    Article  Google Scholar 

  5. Jespersen L, Hvelplund A, Abildstrom SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.

    Article  Google Scholar 

  6. Johnson BD, Shaw LJ, Buchtal SD, et al. Prognosis in women with myocardial ischemia in the absence of obstructive disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109:2993–9.

    Article  Google Scholar 

  7. Olson MB, Kelsey SF, Matthews K, et al. Symptoms, myocardial ischaemia and quality of life in women: results from the NHLBI-sponsored WISE Study. Eur Heart J. 2003;24:1506–14.

    Article  Google Scholar 

  8. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lermin A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8:1445–53.

    Article  Google Scholar 

  9. McSweeney JC, Rosenfeld AG, Abel WM, et al. Preventing and experiencing ischemic heart disease as a woman: State of the science: a scientific statement from the American Heart Association. Circulation. 2016;133:1302–31.

    Article  Google Scholar 

  10. Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141:735–41.

    Article  CAS  Google Scholar 

  11. Wessel TR, Arant CB, McGorray SP, et al. Coronary microvascular reactivity is only partially predicted by atherosclerosis risk factors or coronary artery disease in women evaluated for suspected ischemia: results from the NHLBI Women’s Ischemia Syndrome Evaluation (WISE). Clin Cardiol. 2007;30:69–74.

    Article  Google Scholar 

  12. Ishimori ML, Martin R, Berman DS, et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging. 2011;4:27–33.

    Article  Google Scholar 

  13. Tondi P, Santoliquido A, Di Giorgia A, et al. Endothelial dysfunction as assessed by flow-mediated dilation in patients with cardiac syndrome X: role of inflammation. Eur Rev Med Pharmacol Sci. 2011;15:1074–7.

    CAS  PubMed  Google Scholar 

  14. Recio-Mayoral A, Rimoldi OE, Camici PG, Kasiki JC. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging. 2013;6:660–7.

    Article  Google Scholar 

  15. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41:1387–93.

    Article  Google Scholar 

  16. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994;90:808–17.

    Article  CAS  Google Scholar 

  17. Gould KL, Martiucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. Circulation. 1994;89:1530–8.

    Article  CAS  Google Scholar 

  18. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C resorts coronary microcirculatory function. Circulation. 2000;102:1233–8.

    Article  CAS  Google Scholar 

  19. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal Coronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59:655–62.

    Article  CAS  Google Scholar 

  20. Schachinger V, Britten MB, Elsner M, Walter DH, Scharrer I, Zeiher AM. A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation. 1999;100:1502–8.

    Article  CAS  Google Scholar 

  21. Mosseri M, Yaram R, Gotsman MS, et al. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation. 1986;74:964–72.

    Article  CAS  Google Scholar 

  22. Richardson PJ, Livesley B, Oram S, Olsen EG, Armstrong P. Angina pectoris with normal coronary arteries: transvenous myocardial biopsy in diagnosis. Lancet. 1974;2:677–80.

    Article  CAS  Google Scholar 

  23. Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer BE. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol. 1991;68:996–1003.

    Article  CAS  Google Scholar 

  24. Bottcher M, Botker HE, Sonne H, Nielsen TT, Czernin J. Endothelium-dependent and independent perfusion reserve and the effect of L-arginine on myocardial perfusion in patients with syndrome X. Circulation. 1999;99:1795–801.

    Article  CAS  Google Scholar 

  25. Haung PH, Chen YH, Chen YL, Wu TC, Chen JW, Lin SJ. Vascular endothelial function and circulating endothelial progenitor cells in patients with cardiac syndrome X. Heart. 2007;93:1064–70.

    Article  Google Scholar 

  26. Opherk D, Zebe H, Weihe E, et al. Reduced coronary dilator capacity and ultrastructural changes in the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation. 1981;63:817–25.

    Article  CAS  Google Scholar 

  27. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346:1948–53.

    Article  Google Scholar 

  28. Fragasso G, Chierchia SL, Arioli F, et al. Coronary slow-flow causing transient myocardial hypoperfusion in patients with cardiac syndrome X: long-term clinical and functional prognosis. Int J Cardiol. 2009;137:137–44.

    Article  Google Scholar 

  29. Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. JAMA Intern Med. 2013;173:1863–71.

    PubMed  Google Scholar 

  30. Sullivan AL, Beshansky JR, Ruthazer R, et al. Factors associated with longer time to treatment for patients with suspected acute coronary syndromes: a cohort study. Circ Cardiovasc Qual Outcomes. 2014;7:86–94.

    Article  Google Scholar 

  31. Gulati M, Shaw LJ, Bairey Merz CN. Myocardial ischemia in women: lessons form the NHLBI WISE study. Clin Cardiol. 2012;35:141–8.

    Article  Google Scholar 

  32. Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25:807–14.

    Article  CAS  Google Scholar 

  33. Lamendola P, Lanza GA, Spinelli A, et al. Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol. 2010;140:197–9.

    Article  Google Scholar 

  34. Lanza GA, Manzoli A, Bia E, Crea F, Maseri A. Acute effects of nitrates on exercise testing in patients with syndrome X. Clinical and pathophysiological implications. Circulation. 1994;90:2695–700.

    Article  CAS  Google Scholar 

  35. Nihoyannopoulos P, Kaski JC, Crake T, Maseri A. Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol. 1991;18:1463–670.

    Article  CAS  Google Scholar 

  36. Panza JA, Laurienzo JM, Curiel RV, et al. Investigation of the mechanism of chest pain in patients with angiographically normal coronary arteries using transesophageal dobutamine stress echocardiography. J Am Coll Cardiol. 1997;29:293–301.

    Article  CAS  Google Scholar 

  37. Osler W. The lumleian lectures on angina pectoris. Lancet. 1910;175:697.

    Article  Google Scholar 

  38. Phan A, Shufelt C, Merz CN. Persistent chest pain and no obstructive coronary artery disease. JAMA. 2009;301:1468–74.

    Article  CAS  Google Scholar 

  39. Lantinga LJ, Sprafkin RP, McCroskery JH, Baker MT, Warner RA, Hill NE. One-year psychosocial follow-up of patients with chest pain and angiographically normal coronary arteries. Am J Cardiol. 1988;62:209–13.

    Article  CAS  Google Scholar 

  40. Potts SG, Bass CM. Psychological morbidity in patients with chest pain and normal or near-normal coronary arteries: a long-term follow-up study. Psychol Med. 1995;25:339–47.

    Article  CAS  Google Scholar 

  41. Merz B, Pepine CJ. Syndrome X and microvascular coronary dysfunction. Circulation. 2011;124:1477–80.

    Article  Google Scholar 

  42. Qian J, Ge J, Baumgart D, et al. Safety of intracoronary Doppler flow measurement. Am Heart J. 2000;140:502–10.

    Article  CAS  Google Scholar 

  43. Tio RA, Monnink SH, Amoroso G, et al. Safety evaluation of routine intracoronary acetylcholine infusion in patients undergoing a first diagnostic coronary angiogram. J Investig Med. 2002;50:133–9.

    Article  CAS  Google Scholar 

  44. Shaw LJ, Merz CN, Pepine CJ, et al. Women’s Ischemia Syndrome Evaluation (WISE) Investigators. The economic burden of angina in women with suspected ischemic heart disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation. Circulation. 2006;114:894–904.

    Article  Google Scholar 

  45. Marroquin OC, Holubkov R, Edmundowicz D, et al. Heterogeneity of microvascular dysfunction in women with chest pain not attributable to coronary artery disease: implications for clinical practice. Am Heart J. 2003;145:628–35.

    Article  Google Scholar 

  46. Lanza GA, Buffon A, Sestito A, et al. Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol. 2008;51:466–72.

    Article  Google Scholar 

  47. Galiuto L, Sestito A, Barchetta S, et al. Noninvasive evolution of flow reserve in the left anterior descending coronary artery in patients with cardiac syndrome X. Am J Cardiol. 2007;99:1378–83.

    Article  Google Scholar 

  48. Task Fore Members, Montalescot G, Sechtem U, et al. ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  Google Scholar 

  49. Kaski JC, Valenzuela Garcia LF. Therapeutic options for the management of patients with cardiac syndrome X. Eur Heart J. 2001;22:283–93.

    Article  CAS  Google Scholar 

  50. Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on angina symptoms in syndrome X. Am J Cardiol. 1999;84:854–6.

    Article  CAS  Google Scholar 

  51. Fragasso G, Chierchia SL, Pizzetti G, et al. Impaired left ventricular filling dynamics in patients with angina and angiographically normal coronary arteries: effect of beta adrenergic blockade. Heart. 1997;77:32–9.

    Article  CAS  Google Scholar 

  52. Bugiardini R, Borghi A, Biagetti L, Puddu P. Comparison of verapamil versus propranolol therapy in syndrome X. Am J Cardiol. 1989;63:286–90.

    Article  CAS  Google Scholar 

  53. Cannon RO 3rd, Watson RM, Rosing DR, Epstein SE. Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol. 1985;56:242–6.

    Article  Google Scholar 

  54. Marinescu MA, Loffler AI, Quellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8:210–20.

    Article  Google Scholar 

  55. Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation. 1997;96:3264–5.

    CAS  PubMed  Google Scholar 

  56. Pauly DF, Johnson BD, Anderson RD, et al. In women with symptoms of cardiac ischemia, non-obstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: a double-blond randomized study from the National heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2001;162:678–84.

    Article  Google Scholar 

  57. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994;23:652–7.

    Article  CAS  Google Scholar 

  58. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension. 1996;27:1031–8.

    Article  CAS  Google Scholar 

  59. Houghton JL, Pearson TA, Reed RG, et al. Cholesterol lowering with pravastatin improves resistance artery endothelial function: report of six subjects with normal coronary arteriograms. Chest. 2000;118:756–60.

    Article  CAS  Google Scholar 

  60. Zhang X, Li Q, Zhao J, et al. Effects of combination of statin and calcium channel blocker in patients with cardiac syndrome X. Coron Artery Dis. 2014;25:40–4.

    Article  Google Scholar 

  61. Eshtehardi P, McDaniel MC, Dhawan SS, et al. Effect of intensive atorvastatin therapy on coronary atherosclerosis progression, composition, arterial remodeling, and microvascular function. J Invasive Cardiol. 2012;24:522–9.

    PubMed  Google Scholar 

  62. Caliskan M, Erdogan D, Gullu H, et al. Effects of atorvastatin on coronary flow reserve in patients with slow flow. Clin Cardiol. 2007;30:475–9.

    Article  Google Scholar 

  63. Jadhav S, Ferrell W, Greeg IA, Petrie JR, Cobbe SM, Sattar N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2006;48:956–63.

    Article  CAS  Google Scholar 

  64. Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011;4:514–22.

    Article  Google Scholar 

  65. Villano A, Di Franco A, Nerla R, et al. Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013;112:8–13.

    Article  CAS  Google Scholar 

  66. Cannon RO 3rd, Quyyumi AA, Schenke WH, et al. Abnormal cardiac sensitivity in patients with chest pain and normal coronary arteries. J Am Coll Cardiol. 1990;16:1359–66.

    Article  Google Scholar 

  67. Pasceri V, Lanza GA, Buffon A, et al. Role of abnormal pain sensitivity and behavioral factors in determining chest pain in syndrome X. J Am Coll Cardiol. 1998;31:62–6.

    Article  CAS  Google Scholar 

  68. Foreman RD, Linderoth B, Ardell JL, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res. 2000;47:367–75.

    Article  CAS  Google Scholar 

  69. Olgin JE, Takahashi T, Wilson E, et al. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol. 2002;13:475–81.

    Article  Google Scholar 

  70. Sgueglia GA, Sestito A, Spinelli A, et al. Long-term follow-up of patients with cardiac syndrome X treated by spinal cord stimulation. Heart. 2007;93:591–7.

    Article  Google Scholar 

  71. Luo C, Liu D, Wu G, et al. Effect of enhanced external counterpulsation on coronary blood flow and its relation with endothelial function and inflammation: a mid-term follow-up study. Cardiology. 2012;122:260–8.

    Article  Google Scholar 

  72. Raitakari OT, Adams MR, McCredie RJ, Griffiths KA, Celermajer DS. Passive-smoke related arterial endothelial dysfunction is potentially reversible in healthy young adults. Ann Intern Med. 1999;130:578–81.

    Article  CAS  Google Scholar 

  73. Klonizakis M, Alkhatib A, Middleton G, Smith MF. Mediterranean diet- and exercise-induced improvement in age-dependent vascular activity. Clin Sci (Lond). 2013;124:579–87.

    Article  Google Scholar 

  74. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation. 1995;92:197–204.

    Article  CAS  Google Scholar 

  75. Eriksson BE, Tyni-Lenne R, Svedenhag J, et al. Physical training in Syndrome X: physical training counteracts deconditioning and pain in Syndrome X. J Am Coll Cardiol. 2000;36:1619–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Elliott Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, P.E. (2019). Myocardial Small Vessel Disease and Endothelial Dysfunction. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-97622-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97622-8_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-97621-1

  • Online ISBN: 978-3-319-97622-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics