Skip to main content

The Role of Catalysis in Promoting Chemical Reactions

  • Chapter
  • First Online:
The Chemical Reactor from Laboratory to Industrial Plant

Abstract

Some fundamental aspects of the catalytic phenomenon are described in the introductory part of this chapter. Next, some different catalyst classifications are described based on catalytic action (acid–base, redox, metallorganic, and enzymatic) or catalytic environment (homogeneous and heterogeneous). Different aspects of homogeneous catalysis are examined in detail considering acid–base catalysis, catalysis promoted by metal transition complexes, and enzymatic catalysis. Heterogeneous catalysis is then examined describing gas–solid interactions in particular and adsorption isotherms useful for determining gas–solid interface area. Different heterogeneous catalysts are described, such as acid–base solid catalysts based on metal oxides and their mixtures, metal oxide catalysts acting as semiconductors, zeolites, and unsupported and supported metal catalysts. The most commonly employed supports are described together with techniques for their preparation and impregnation. Finally, catalyst-forming procedures are briefly described. Some exercises and associated Matlab code are provided online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R.B.: Experimental Methods in Catalytic Research. Academic Press, New York (1968)

    Google Scholar 

  • Anderson, J.R.: Structure of Metallic Catalysis. Academic Press (1975)

    Google Scholar 

  • Barrer, R.M.: Zeolites and clay Minerals as Sorbents and Molecular Sieves. Academic Press, London (1978)

    Google Scholar 

  • Beek, O.: Hydrogenation Catalysts. Discuss. Faraday Soc. 8, 118–128 (1950)

    Article  Google Scholar 

  • Boudart, M.: Heterogeneous catalysis by metals. J. Mol. Catal. 30, 27–38 (1985)

    Article  CAS  Google Scholar 

  • Breck, D.W.: Zeolite Molecular Sieves: Structure, Chemistry and Use. Wiley-Interscience, London-New York (1974)

    Google Scholar 

  • Brønsted, J.N.: Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pays-Bas. 42(8), 718–728 (1923)

    Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  • Brunelle, J.P.: Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem. 50, 1211 (1978)

    Google Scholar 

  • Clerici, M.: Oxidation of saturated hydrocarbons with hydrogen peroxide, catalyzed by titanium silicalite. Appl. Catal. 68(1–2), 249–261 (1991)

    Article  CAS  Google Scholar 

  • Clerici, M., Ingallina, P.: Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J. Catal. 140, 71 (1993)

    Article  CAS  Google Scholar 

  • Courty, Ph., Duhaut, P.: Rev. Inst. Franc. Du Petrole XXIX-6, 861 (1974)

    Google Scholar 

  • Doesburg, E.B.M., van Hoof, J.H.C.: Preparation of catalyst supports and zeolites in catalysis in an integrated approach to homogeneous. In: Moullijn, J.A., van Leeuven, P.W.N.M., van Santen R.A. Chapter 8 in Heterogeneous and Industrial Catalysis. Elsevier, Amsterdam (1993)

    Google Scholar 

  • Dollimore, D., Heal, G.L.: An improved method for the calculation of pore-size distribution from adsorption data. J. Appl. Chem. 14, 109–114 (1964)

    Article  CAS  Google Scholar 

  • Dollimore, D., Heal, G.L.: Pore-size distribution in typical adsorbent systems. J. Colloid Interf. Sci. 33(4), 508–519 (1970)

    Article  CAS  Google Scholar 

  • Gerasimov, Y.A., Dreving, V., Eremin, E., KIselev, A., Lebedev, V., Panchenkov, G., Shlygin, A.: Physical Chem. 1 (1974). (MIR Pu. Moscow)

    Google Scholar 

  • Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Syst. Charact. 23, 1–11 (2006)

    Article  Google Scholar 

  • Halsey, G.: Physical adsorption in non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)

    Article  CAS  Google Scholar 

  • Hammett, L.P., Deyrup, A.J.: A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. 54(7), 2721–2739 (1932)

    Google Scholar 

  • Hasselbalch, K.A.: Die Berechnung der Wasserstoffzahl des Blutes aus derfreien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift 78, 112–144 (1916)

    CAS  Google Scholar 

  • Henderson, L.J.: Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 21, 173–179 (1908)

    CAS  Google Scholar 

  • Jacobs, P.A., Beyer, H.K., Valyon, J.: Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents. Zeolites 1, 161–168 (1981)

    Article  CAS  Google Scholar 

  • Kapteijn, F., Nijhuis, T.A., Heiszwolf, J.J., Moulijn, J.A.: New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 66(2–4), 133–144 (2001)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

    Article  CAS  Google Scholar 

  • Le Page, J.F., Miller, R.L., Miller, E.B., Limido, J.: Applied Heterogeneous Catalysis, Design, Manufacture, Use of Solid Catalysts. Edition Technip, Paris (1987)

    Google Scholar 

  • Lewis, G.N.: Valence and the Structure of Atoms and Molecules. Chemical Catalog Co., New York (1923)

    Google Scholar 

  • Millini, R., Massaro, E., Perego, G., Bellussi, G.: Framework composition of titanium silicalite. J. Catal. 137(2), 497–503 (1992)

    Article  CAS  Google Scholar 

  • Nielsen, J.E., Borchert, T.V.: Protein engineering of bacterial α-amylases. Biochem. Biophys. Acta. 1543, 253–274 (2000)

    CAS  PubMed  Google Scholar 

  • Notari, B.: Innovation in zeolite material science. Synthesis and catalytic properties of titanium containing zeolites. Study Surf. Sci. Catal. 37, 413 (1988)

    Article  CAS  Google Scholar 

  • Oblad, A.G., Milliken, T.H., Mills, G.D.: Chemical characteristics and Structure of Cracking Catalysts; Advances in Catalysis, vol. 3. Academic, New York (1951)

    Google Scholar 

  • Parravano, G.: The catalytic oxidation of carbon monoxide on nickel oxide. I. pure nickel oxide. J. Am. Chem. Soc. 75(6), 1448–1451 (1953)

    Article  CAS  Google Scholar 

  • Perego, C., Villa, P.: Catalysts preparation methods. Catal. Today 34, 281–305 (1997)

    Article  CAS  Google Scholar 

  • Peri, J.B.: A model for the surface of γ-alumina. J. Phys. Chem. 69(1), 220 (1965)

    Google Scholar 

  • Piccin, J.S., Dotto, G.L., Pinto, L.A.A.: Adsorption isotherms and thermochemical data of FD&C red n° 40 binding by Chitosan. Braz. J. Chem. Eng. 28(2), 295–304 (2011)

    Article  CAS  Google Scholar 

  • Prieto, M.A., Biarnes, X., Vidossich, P.: The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 131(33), 11751–11761 (2009)

    Article  Google Scholar 

  • Richardson, J.T.: Principles of Catalysts Development. Springer Science (1992)

    Google Scholar 

  • Romano, U., Esposito, A., Maspero, F., Neri, F., Clerici, M.: New developments in selective oxidation. Study Surf. Sci. Catal. 55, 33 (1990)

    Article  CAS  Google Scholar 

  • Smith, J.M.: Chemical Engineering Kinetics. Mc Graw-Hill Book Co., New York (1981)

    Google Scholar 

  • Tanabe, K.: Solid Acids and Bases. Kodansha Tokio and Academic Press, New York (1970)

    Book  Google Scholar 

  • Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T.: A new hypothesis regarding the surface acidity of binary metal oxides. Bull. Chem. Soc. Jpn 47(5), 1064 (1974)

    Google Scholar 

  • Taylor, H.S.: A theory of the catalytic surface. Proc. Royal Soc. A Math. Phys. Eng. Sci. 108(745), 105–111 (1925)

    Article  CAS  Google Scholar 

  • Thomson, W., Kelvin, L.: On the equilibrium of vapour at a curved surface of liquid. Philos. Mag. 42, 448 (1871)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273 (1921)

    Google Scholar 

  • Wheeler, A.: Reaction rates and selectivity in catalyst pores in catalysis. In: Emmet, P.H. (ed.) Rheinold, Vol. II, p. 105. New York (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Santacesaria .

3.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santacesaria, E., Tesser, R. (2018). The Role of Catalysis in Promoting Chemical Reactions. In: The Chemical Reactor from Laboratory to Industrial Plant. Springer, Cham. https://doi.org/10.1007/978-3-319-97439-2_3

Download citation

Publish with us

Policies and ethics