Skip to main content

Thermodynamics of Physical and Chemical Transformations

  • Chapter
  • First Online:
The Chemical Reactor from Laboratory to Industrial Plant

Abstract

In this chapter, physical and chemical transformations are considered as a route from a less stable to a more stable equilibrium state. Initially, only physical transformations are considered describing the first and second thermodynamic laws and thermodynamic properties like internal energy, enthalpy, and entropy. Next, thermodynamic equilibrium in chemically reacting systems is considered, defining “chemical potential” as the driving force for reactions and examining in detail chemical equilibrium conditions. Equilibrium reactions between gases at different pressures are considered and the fugacity concept to describe the behavior of real gases is introduced. Different methods for determining and fugacity are described. Equilibrium reactions between reactants in the liquid phase are also considered, introducing the concept of activity. Different methods for determining activity coefficients are described. Several examples of equilibrium calculations are reported. Matlab code associated with these examples is available online. Finally, vapor–liquid equilibrium is examined in detail considering its applications in a flash-unit and a tray-distillation column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, D., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures. A new expression for the excess Gibbs energy of partly and completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  • Ambrose, D.: Correlation and estimation of vapor-liquid critical properties I. Critical temperatures of organic compounds. NPL Rep. Chem. 92, National Physical Laboratory, Teddington, UK (1978)

    Google Scholar 

  • Ambrose, D.: Vapor-liquid critical properties II. Critical pressure and critical volume. NPL Rep. Chem. 107, National Physical Laboratory, Teddington, UK (1980)

    Google Scholar 

  • Anderson, J.W., Beyer, G.H., Watson, K.M.: Natl. Petrol News 36, R476–R483 (1944)

    Google Scholar 

  • Bertucco, A., Barolo, M., Soave, G.: Estimation of chemical equilibria in high-pressure gaseous systems by a modified Redlich-Kwong-Soave equation of state. Ind. Eng. Chem. Res. 34(9), 3159–3165 (1995)

    Article  CAS  Google Scholar 

  • Bodenstein, M.: Zersetzung und Bildung von Jodwasserstoff; Z. Physik. Chem., 22 (1897)

    Google Scholar 

  • Carrà, S.: La Produzione Chimica: Processi e Operazioni Unitarie; ISEDI, Enciclopedia della Chimica (1977)

    Google Scholar 

  • Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40(10), 1697–1710 (1994)

    Article  CAS  Google Scholar 

  • Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Phys. Z. 24, 185–206 (1923)

    CAS  Google Scholar 

  • Dyson, D.C., Simon, J.M.: A kinetic expression with diffusion correction for ammonia synthesis on industrial catalyst. Ind. Eng. Chem. Fundam. 7(4), 605 (1986)

    Article  Google Scholar 

  • Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  CAS  Google Scholar 

  • Francis, A.W.: The free energies of some hydrocarbons. Ind. Eng. Chem. 20(3), 277–282 (1928)

    Google Scholar 

  • Franklin, J.L.: Prediction of heat and free energies of organic compounds. Ind. Eng. Chem. 41, 1070–1076 (1949)

    Google Scholar 

  • Fredenslund, A.A., Russell, L.J., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21(6), 1086–1099 (1975)

    Article  CAS  Google Scholar 

  • Fredenslund, A.A., Gmehling, J., Rasmussen, P.: Vapor-Liquid equilibria using UNIFAC, a group contribution method. Elsevier Scientific Pu. Co., Amsterdam (1977)

    Google Scholar 

  • Gerasimov, Y.A., Dreving, V., Eremin, E., Kiselev, A., Lebedev, V., Panchenkov, G., Shlygin, A.: Physical Chemistry, Vol. I. MIR Publisher, Moscow (1974)

    Google Scholar 

  • Gillespie, L.J., Beattie, J.A.: The thermodynamic treatment of chemical equilibria in systems composed of real gases. I. An approximate equation for the mass action function applied to the existing data on the Haber equilibrium. Phys. Rev. 36, 743 (1930)

    Article  CAS  Google Scholar 

  • Glasstone, S.: Thermodynamics for Chemistry. Van Nostrand, New York (1947)

    Google Scholar 

  • Guéret, C., Daroux, M., Billaud, F.: Methane pyrolysis: thermodynamics. Chem. Eng. Sci. 52(5), 815–827 (1997)

    Article  Google Scholar 

  • Hayden, J.G., O’Connel, J.P.: A generalized method for predicting second virial coefficients. Ind. Eng. Chem. Proc. Des. Dev. 14(3), 209–216 (1975)

    Article  CAS  Google Scholar 

  • Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold Co., New York (1970)

    Google Scholar 

  • Hougen, O.A., Watson, K.M.: Chemical Process Principles, Part Two: Thermodynamics. Wiley, New York (1947)

    Google Scholar 

  • Huggins, M.L.: Solutions of long-chain compounds. J. Chem. Phys. 9, 440 (1941)

    Article  CAS  Google Scholar 

  • Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group contributions. Chem. Eng. Commun. 57, 233–243 (1987)

    Article  CAS  Google Scholar 

  • Kammerlingh Onnes, H.: Expression of the equation of state of gases and liquids by means of serie. Communications from the Physical Laboratory of the University of Leiden 71, pp. 3–25 (1901)

    Google Scholar 

  • Kay, W.B.: Density of hydrocarbon. Ind. Eng. Chem. 28, 1014 (1936)

    CAS  Google Scholar 

  • Kojima, K., Tochigi, K.: Prediction of Vapor-Liquid Equilibria by the ASOG Method. Kodanska ltd, Elsevier (1979)

    Google Scholar 

  • Larson, A.T.: The ammonia equilibrium at high pressure. J. Am. Chem. Soc. 46, 367–372 (1924)

    Article  CAS  Google Scholar 

  • Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21(3), 510–527 (1975)

    Article  CAS  Google Scholar 

  • Lewis, G.N.: The law of physico-chemical change. Proc. Am. Acad. Arts Sci. 37(4), 49–69 (1901)

    Article  Google Scholar 

  • Lewis, G.N., Randall, M.: Thermodynamics, 2nd edn (Revised by Pitzer, K.S., Brewer, L.). Mc Graw-Hill, New York (1961)

    Google Scholar 

  • Lowry, T.M.: The Uniqueness of hydrogen. J. Soc. Chem. Ind. 42(3), 43–47 (1923)

    Article  CAS  Google Scholar 

  • Lydersen, A.L.: Estimation of critical properties of organic compounds. Coll. Eng. Univ. Wisconsin, Engineering Experimental Station Rept. 3, Madison, WI (1955)

    Google Scholar 

  • Margules M.: Über die Zusammensetzung der gesättigten Dämpfe von ischungen. Sitzungsberichte der Kaiserliche Akadamie der Wissenschaften Wien Mathematisch-Naturwissenschaftliche Klasse II. 104, 1243–1278 (1895)

    Google Scholar 

  • Mc Cann, D.W., Danner, R.P.: Prediction of second virial coefficients of organic compounds by a group contribution method 23(3), 529–533 (1984)

    Google Scholar 

  • Neumann, B., Kohler, G.: Die Gleichgewitchtsverhaltnisse bei der Wassergasreaktion im Temperaturbereich von 300 bis 1000°. Z. Elektrochem. 34, 218–237 (1928)

    CAS  Google Scholar 

  • Peneloux, A., Rauzy, E., Fréze, R.: A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 8(1): 7–23 (1982)

    Google Scholar 

  • Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64(1976)

    Google Scholar 

  • Pitzer, K.S.: The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients. J. Am. Chem. Soc. 77, 3427–3433 (1955)

    Article  CAS  Google Scholar 

  • Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Rev. Chem. 44(1), 233–244 (1949)

    Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases & Liquids. Mc Graw Hill, New York (1987)

    Google Scholar 

  • Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14(1), 135–144 (1968)

    Article  CAS  Google Scholar 

  • Rihani, D.N., Doraiswamy, L.K.: Estimation of heat capacity of organic compounds from group contributions. Ind. Eng. Chem. Fundam. 4(1), 17–21 (1965)

    Google Scholar 

  • Rossini, F.D, Pitzer, K.S., Arnett, R.L., Braun, R.M., Pimentel, G.C.: API Project 44, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. Carnegie Press, Pittsburg (1953)

    Google Scholar 

  • Scatchard, G.: Equilibrium in non-electrolyte mixtures. Chem. Rev. 44(1), 7–35 (1949)

    Article  CAS  Google Scholar 

  • Scott, R.L.: Corresponding states treatment of nonelectrolyte solutions. J. Chem. Phys. 25, 193 (1956)

    Article  CAS  Google Scholar 

  • Smith, B.D.: Thermodynamic excess property measurements for acetonitrile-benzene-n-heptane system at 45°C. J. Chem. Eng. Data 17, 71–76 (1972)

    Google Scholar 

  • Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203 (1972)

    Google Scholar 

  • Soave, G., Barolo, M., Bertucco, A.: Estimation of high-pressure fugacity coefficients of pure gaseous fluids by a modified SRK equation of state. Fluid Phase Equilib. 91, 87–100 (1993)

    Article  CAS  Google Scholar 

  • Standing, M.B., Katz, D.L.: Density of natural gases. Trans. AIME 146, 140–149 (1942)

    Article  Google Scholar 

  • Stull, D.R., Westrum, E.F., Sinke, G.C.: The Chemical Thermodynamics of Organic Compounds. Wiley, New York (1969)

    Google Scholar 

  • Su, G.J.: Modified law of corresponding states for real gases. Ind. Eng. Chem. 38, 803–806 (1946)

    Article  CAS  Google Scholar 

  • Tsonopoulos, C.: An empirical correlation of second virial coefficients. A.I.Ch.E. J. 20, 263 (1974)

    Google Scholar 

  • Vancini, C.A.: Synthesis of Ammonia. The Macmillan Press, London (1971)

    Google Scholar 

  • Van Krevelen, D.W., Chermin, H.A.: Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem. Eng. Sci. 1, 66–80 (1951)

    Google Scholar 

  • Van Laar, J.J.: The vapor pressure of binary mixtures. Z. Phys. Chem. 72, 723 (1910)

    Google Scholar 

  • Van Ness, H.C., Abbott M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. Mc Graw-Hill, New York (1982)

    Google Scholar 

  • Verma, K.K., Doraiswamy, L.K.: Estimation of heats of formation of organic compounds. Ind. Eng. Chem. Fundamen. 4(4), 389–396 (1965)

    Google Scholar 

  • Wallace, F.J., Linning, W.A.: Basic Engineering Thermodynamics. Pitman Paperbacks (1970)

    Google Scholar 

  • Wilson, G.M.: Vapor-liquid equilibrium. xi. a new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86(2), 127–130 (1964)

    Google Scholar 

  • Wisniak, Y.: Émile-Hilaire Amagat and the laws of fluids. Educacion Quimica 17(1), 86–96 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Santacesaria .

2.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 190

 kb)

Appendices

Appendix 1: Lydersen’s Method: Increments for the Calculation of the Critical Variables

Functional groups

ΔT

ΔP

ΔV

Increments for groups not in a ring

\( - {\text{CH}}_{ 3} \)

0.020

0.227

55

0.020

0.227

55

0.012

0.210

51

0.000

0.210

41

\( {\text{ = CH}}_{ 2} \)

0.018

0.198

45

0.018

0.198

45

0.000

0.198

36

\( {\text{ = C = }} \)

0.000

0.198

36

\( \equiv {\text{CH}} \)

0.005

0.153

(36)

\( \equiv C - \)

0.005

0.153

(36)

Increments for groups inside a ring

\( - {\text{CH}}_{2} - \)

0.013

0.184

44.5

0.012

0.192

46

(−0.007)

(0.154)

(31)

0.011

0.154

37

0.011

0.154

36

\( = {\text{C}} = \)

0.011

0.154

36

Increments for alogens

   

\( - {\text{F}} \)

0.018

0.224

18

\( - {\text{Cl}} \)

0.017

0.320

49

\( - {\text{Br}} \)

0.010

(0.50)

(70)

\( - {\text{I}} \)

0.012

(0.83)

(95)

Increments for groups containing oxygen

\( - {\text{OH}} \) (alcohol)

0.082

0.06

(18)

\( - {\text{OH}} \) (phenol)

0.031

(−0.02)

(3)

\( - {\text{O}} - \) (not in a ring)

0.021

0.16

20

\( - {\text{O}} - \) (in a ring)

(0.014)

(0.12)

(8)

(not in a ring)

0.040

0.29

60

(in a ring)

(0.033)

(0.2)

(50)

(aldehyde)

0.048

0.33

73

\( - {\text{COOH}} \) (acid)

0.085

(0.4)

80

\( - {\text{COO}} - \) (ester)

0.047

0.47

80

\( {\text{ = O}} \) (different from previous cases)

(0.02)

(0.12)

(11)

Increments for groups containing nitrogen

\( - {\text{NH}}_{ 2} \)

0.031

0.095

28

(not in a ring)

0.031

0.135

(37)

(in a ring)

(0.024)

(0.09)

(27)

(not in a ring)

0.014

0.17

(42)

(in a ring)

(0.007)

(0.13)

(32)

\( - {\text{CN}} \)

(0.060)

(0.36)

(80)

\( - {\text{NO}}_{ 2} \)

(0.055)

(0.42)

(78)

Increments for groups containing sulphur

\( - {\text{SH}} \)

0.015

0.27

55

\( - {\text{S}} - \) (not in a ring)

0.015

0.27

55

\( - {\text{S}} - \) (in a ring)

(0.008)

(0.24)

(45)

\( = {\text{S}} \)

(0.003)

(0.24)

(47)

Other functional groups

0.03

(0.54)

(0.03)

  1. (1) No increments are foreseen for hydrogen; (2) all the free bonds shown must be connected with atoms different from hydrogen; and (3) the values in brackets are not precise because they were based on few experimental data

Appendix 2: Group Contributions for Estimating \( C_{\text{p}}^{0} \),\( {\Delta} H_{\text{f,298K}}^{0} \), and \( {\Delta} G_{\text{f}}^{0} \)

Part 1

Groups

Heat-capacity constants

\( {\Delta} H_{\text{f}}^{0} \)

(298 K)

Constants for determining Gibbs free energy

300–600 K

600–1500 K

a

b × 102

c × 104

d × 106

A

B × 102

A

B × 102

\( - {\text{CH}}_{ 3} \)

0.6087

2.1433

–0.0852

0.1135

10.25

–10.943

2.215

–12.310

2.436

\( - {\text{CH}}_{ 2} - \)

0.3945

2.1363

–0.1197

0.2596

–4.94

–5.193

2.430

–5.830

2.544

–3.5232

3.4158

–0.2816

0.8015

–1.29

–0.705

2.910

–0.705

2.910

–5.8307

4.4541

–0.4208

1.263

0.62

1.958

3.735

4.385

3.350

0.2773

3.4580

–0.1918

0.4130

15.02

13.737

1.655

12.465

1.762

–0.4173

3.8857

–0.2783

0.7364

20.50

16.467

1.915

16.255

1.966

(cis)

–3.1210

3.0860

–0.2359

0.5504

17.96

17.663

1.965

16.180

2.116

(trans)

0.9377

2.9904

–0.1749

0.3918

17.83

17.187

1.915

15.815

2.062

–1.4714

3.3842

–0.2371

0.6063

–20.10

20.217

2.295

19.584

2.354

0.4736

3.5183

–0.3150

0.9205

30.46

25.135

2.573

25.135

2.573

2.2400

4.2896

–0.2566

0.5908

49.47

49.377

1.035

48.170

1.208

2.6308

4.1658

–0.2845

0.7277

51.30

51.084

1.474

51.084

1.474

–3.1249

6.6843

–0.5766

1.743

55.04

52.460

1.483

52.460

1.483

\( \equiv {\text{CH}} \)

27.10

27.048

–0.765

26.700

–0.704

\( \equiv {\text{C}} - \)

27.38

26.938

–0.525

26.555

–0.550

Part 2

Groups

Heat-capacity constants

\( {\Delta} H_{\text{f}}^{0} \)

(298 K)

Constants for determining Gibbs free energy

300–600 K

600–1500 K

a

b × 102

c × 104

d × 106

A

B × 102

A

B × 102

Groups for conjugated alkenes

(10.1)

5.437

0.675

4.500

0832

(12)

7.407

1.035

6.980

1.088

9.152

1.505

10.370

1.308

–1.4572

1.9147

–0.1233

0.2985

3.27

3.047

0.615

2.505

0.706

–1.3883

1.5159

–0.0690

0.2659

5.55

4.675

1.150

5.010

0.988

0.1219

1.2170

–0.0855

0.2122

4.48

3.513

0.568

3.998

0.485

Corrections for cycloparafine rings

Three-atom rings

–3.5320

–0.0300

0.0747

–0.5514

24.13

23.458

–3.045

22.915

–2.966

Four-atom rings

–8.6550

1.0780

0.0425

0.0250

18.45

10.73

–2.65

10.60

–2.50

Five-atom rings (pentane)

–12.285

1.8609

–0.1037

0.2145

5.44

4.275

–2.350

2.665

–2.182

Five-atom rings (pentene)

–6.8813

0.7818

–0.0345

0.0591

–3.657

–2.395

–3.915

–2.150

Six-atom rings (hexane)

–13.3923

2.1392

–0.0429

–0.1865

–0.76

–1.128

–1.635

–1.930

–1.504

Six-atom rings (hexene)

–8.0238

2.2239

–0.1915

0.5473

–9.102

–2.045

–8.810

–2.071

Branched parafines

Side chain with ≥ 2 atoms

0.80

1.31

0

1.31

0

–1.2

–2.13

0

2.12

0

0.6

1.80

0

1.80

0

(5.4)

2.58

0

2.58

0

Part 3

Groups

Heat-capacity constants

\( {\Delta} H_{\text{f}}^{0} \)

(298 K)

Constants for determining Gibbs free energy

300–600 K

600–1500 K

a

b × 102

c × 104

d × 106

A

B × 102

A

B × 102

Branching in cycles with 5 atoms

Single branching

0

–1.04

0

–1.69

0

Double branching

 

Position 1,1

0.30

–1.85

0

–1.19

–0.16

Position cis-1,2

0.70

–0.38

0

–0.38

0

Position trans-1,2

–1.10

–2.55

0

–0.945

–0.266

Position cis-1,3

–0.30

–1.20

0

–0.370

–0.166

Position trans-1,3

–0.90

–2.35

0

–0.800

–0.264

Branching in cycles with 6 atoms

Single branching

0

–0.93

0

0.230

–0.192

Double branching

 

Position 1,1

2.44

0.835

–0.367

1.745

–0.556

Position cis-1,2

–0.20

–0.19

0

1.470

–0.276

Position trans-1,2

–2.69

–2.41

0

0.045

–0.398

Position cis-1,3

–2.98

–2.70

0

–1.647

–0.185

Position trans-1,3

–0.48

–1.60

0

0.260

–0.290

Position cis-1,4

–0.48

–1.11

0

–1.11

0

Position trans-1,4

–2.98

–2.80

0

–0.995

–0.245

Branching in aromatic rings

Double branching

 

Position 1,2

0.94

1.02

0

1.02

0

Position 1,3

0.38

–0.31

0

–0.31

0

Position 1,4

0.58

0.93

0

0.93

0

Triple branching

 

Position 1,2,3

1.80

1.91

0

2.10

0

Position 1,2,4

0.44

1.10

0

1.10

0

Position 1,3,5

0.44

0

0

0

0

Groups containing oxygen

\( -{\text{OH}} \)(primary)

6.5128

–0.1347

0.0414

–0.1623

–41.2

–41.56

1.28

–41.56

1.28

\( - {\text{OH}} \)(secondary)

6.5128

–0.1347

0.0414

–0.1623

–43.8

–41.56

1.28

–41.56

1.28

\( - {\text{OH}} \)(tertiary)

6.5128

–0.1347

0.0414

–0.1623

–47.6

–41.56

1.28

–41.56

1.28

\( - {\text{OH}} \)(quaternary)

6.5128

–0.1347

0.0414

–0.1623

–45.1

–41.56

1.28

–41.56

1.28

\( - {\text{O}}- \)

2.8461

–0.0100

0.0454

–0.2728

–24.2

–15.79

–0.85

\( - {\text{CHO }}- \)

3.5184

0.9437

0.0614

–0.6978

–29.71

–29.28

0.77

–30.15

0.83

1.0016

2.0763

–0.1636

0.4494

–31.48

–28.08

0.91

–28.08

0.91

\( - {\text{COOH}} \)

1.4055

3.4632

–0.2557

0.6886

–94.68

–98.39

2.86

–98.83

2.93

\( - {\text{COO}}- \)

2.7350

1.0751

0.0667

–0.9230

(–79.8)

–92.62

2.61

–92.62

2.61

–3.7344

1.3727

–0.1265

0.3789

–21.62

–18.37

0.80

–16.07

0.40

Part 4

Groups

Heat capacity constants

\( {\Delta} H_{\text{f}}^{0} \)

(298 K)

Constants for determining Gibbs free energy

300–600 K

600–1500 K

a

b × 102

c × 104

d × 106

A

B × 102

A

B × 102

Groups containing nitrogen

\( - {\text{C }}\equiv {\text{N}} \)

4.5104

0.5461

0.0269

–0.3790

36.82

30.75

–0.72

30.75

–0.72

\( - {\text{N = C}} \)

5.0860

0.3492

0.0259

–0.2436

(44.4)

46.32

–0.89

46.32

–0.89

\( - {\text{NO}}_{2} \)

1.0898

2.6401

–0.1871

0.4750

–7.94

–9.0

3.70

–14.19

4.38

\( - {\text{NH}}_{2} \)(aliphatic)

4.1783

0.7378

0.0679

–0.7310

3.21

2.82

2.71

–6.78

3.98

\( - {\text{NH}}_{2} \)(aromatic)

4.1783

0.7378

0.0679

–0.7310

–1.27

2.82

2.71

–6.78

3.98

(aliphatic)

–1.2530

2.1932

–0.1604

0.4237

13.47

12.93

3.16

12.93

3.16

(aromatic)

–1.2530

2.1932

–0.1604

0.4237

8.50

12.93

3.16

12.93

3.16

(aliphatic)

–3.4677

2.9433

–0.2673

0.7828

18.94

19.46

3.82

19.46

3.82

(aromatic)

–3.4677

2.9433

–0.2673

0.7828

8.50

19.46

3.82

19.46

3.82

2.4458

0.3436

0.0171

–0.2719

11.32

1.11

12.26

0.96

Groups containing sulphur

\( - {\text{SH}} \)

2.5597

1.3347

–0.1189

0.3820

4.60

–10.68

1.07

–10.68

1.07

\( - {\text{S }}- \)

4.2256

0.1127

–0.0026

–0.0072

11.17

–3.32

1.42

–3.32

1.44

4.0824

–0.0001

0.0731

–0.6081

(7.8)

–0.97

0.51

–0.65

0.44

Groups containing alogens

\( - {\text{F}} \)

1.4382

0.3452

–0.0106

–0.0034

–45.10

0.20

\( - {\text{Cl}} \)

3.0660

0.2122

–0.0128

0.0276

–8.25

0

–8.25

0

\( - {\text{Br}} \)

2.7605

0.4731

–0.0455

0.1420

–1.62

–0.26

–1.62

–0.26

\( - {\text{I}} \)

3.2651

0.4901

–0.0539

0.1782

7.80

0

7.80

0

  1. Units \( C_{\text{p}}^{0} \) in kcal/(mol K); \( {\Delta} H_{\text{f,298K}}^{0} \) in kcal/mol; and \( {\Delta} G_{\text{f}}^{0} \) in kcal/mol.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santacesaria, E., Tesser, R. (2018). Thermodynamics of Physical and Chemical Transformations. In: The Chemical Reactor from Laboratory to Industrial Plant. Springer, Cham. https://doi.org/10.1007/978-3-319-97439-2_2

Download citation

Publish with us

Policies and ethics