Skip to main content

FISH Testing of Cytology Specimens: Pre-analytic, Analytic, and Post-analytic Considerations

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology

Abstract

Fluorescence in situ hybridization (FISH) has been a revolutionary adjunct tool to traditional histopathological approaches for detecting genomic abnormalities in neoplasia that aid in diagnosis, prognosis, or prediction of response to therapy. With the rise of minimally invasive procedures for obtaining lesional material for evaluation, FISH studies performed on cytologic preparations have increased in use and demonstrated value in patient care. In this chapter, the qualitative and quantitative pre-analytic and analytic considerations of FISH as they relate to various cytology specimens are addressed. In addition, aspects of FISH validation as well as the principles and challenges inherent in the interpretation of FISH results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABL1 :

ABL proto-oncogene 1

ALK :

Anaplastic lymphoma kinase or ALK receptor tyrosine kinase

BCL2 :

B-cell CLL/lymphoma 2

BCR:

Breakpoint cluster region

bp:

Basepair

BRAF :

v-Raf murine sarcoma viral oncogene homolog B

CCND1 :

Cyclin D1

DAPI:

4′,6-diamidino-2-phenylindole

EDTA:

Ethylenediaminetetraacetic acid

EML4 :

Echinoderm microtubule-associated protein-like 4

ERBB2 :

Erb-b2 receptor tyrosine kinase 2 (HER2)

ERG :

ERG, ETS transcription factor

ETV6 :

ETS variant 6

EWSR1 :

Ewing sarcoma breakpoint region 1

FFPE:

Formalin fixed paraffin embedded

FISH:

Fluorescence in situ hybridization

FNA:

Fine-needle aspirate

HER2 :

Human epidermal growth factor receptor 2 (ERBB2)

IGH :

Immunoglobulin heavy chain

ISH:

In situ hybridization

Kb:

Kilobase

KMT2A :

Lysine methyltransferase 2A

LBC:

Liquid-based cytology

Mb:

Megabase

MLL :

Mixed-lineage leukemia

MYC :

v-myc avian myelocytomatosis viral oncogene homolog

MYCN :

v-myc myelocytomatosis viral oncogene homolog, neuroblastoma-derived

Pap:

Papanicolaou

PML :

Promyelocytic leukemia

RARA :

Retinoic acid receptor alpha

ROS1 :

ROS proto-oncogene 1, receptor tyrosine kinase

RT-PCR:

Reverse transcription-polymerase chain reaction

RUNX1 :

Runt-related transcription factor 1

SS18 :

Synovial sarcoma translocation chromosome 18

References

  1. Brockman SR, Paternoster SF, Ketterling RP, Dewald GW. New highly sensitive fluorescence in situ hybridization method to detect PML/RARA fusion in acute promyelocytic leukemia. Cancer Genet Cytogenet. 2003;145(2):144–51.

    Article  CAS  Google Scholar 

  2. Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123(11):659–68.

    Article  CAS  Google Scholar 

  3. Bridge JA. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: pre-analytic and analytic factors. Cancer Cytopathol. 2017;125(1):11–9.

    Article  CAS  Google Scholar 

  4. Knoepp SM, Roh MH. Ancillary techniques on direct-smear aspirate slides: a significant evolution for cytopathology techniques. Cancer Cytopathol. 2013;121(3):120–8.

    Article  CAS  Google Scholar 

  5. Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140(12):1323–30.

    Article  Google Scholar 

  6. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    Article  Google Scholar 

  7. Monaco SE, Teot LA, Felgar RE, Surti U, Cai G. Fluorescence in situ hybridization studies on direct smears: an approach to enhance the fine-needle aspiration biopsy diagnosis of B-cell non-Hodgkin lymphomas. Cancer. 2009;117(5):338–48.

    CAS  PubMed  Google Scholar 

  8. Bozzetti C, Nizzoli R, Tiseo M, Squadrilli A, Lagrasta C, Buti S, et al. ALK and ROS1 rearrangements tested by fluorescence in situ hybridization in cytological smears from advanced non-small cell lung cancer patients. Diagn Cytopathol. 2015;43(11):941–6.

    Article  Google Scholar 

  9. Bravaccini S, Tumedei MM, Ulivi P, Zoli W, Calistri D, Candoli P, et al. ALK translocation detection in non-small cell lung cancer cytological samples obtained by TBNA or EBUS-TBNA. Cytopathology. 2016;27(2):103–7.

    Article  CAS  Google Scholar 

  10. Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer. 2004;102(2):124–31.

    Article  CAS  Google Scholar 

  11. Richmond J, Bryant R, Trotman W, Beatty B, Lunde J. FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer. 2006;108(3):198–204.

    Article  Google Scholar 

  12. Killian JK, Walker RL, Suuriniemi M, Jones L, Scurci S, Singh P, et al. Archival fine-needle aspiration cytopathology (FNAC) samples. untapped resource for clinical molecular profiling J Mol Diagn. 2010;12(6):739–45.

    CAS  PubMed  Google Scholar 

  13. Betz BL, Dixon CA, Weigelin HC, Knoepp SM, Roh MH. The use of stained cytologic direct smears for ALK gene rearrangement analysis of lung adenocarcinoma. Cancer Cytopathol. 2013;121(9):489–99.

    Article  CAS  Google Scholar 

  14. Zito Marino F, Rossi G, Brunelli M, Malzone MG, Liguori G, Bogina G, et al. Diagnosis of anaplastic lymphoma kinase rearrangement in cytological samples through a fluorescence in situ hybridization-based assay: cytological smears versus cell blocks. Cancer Cytopathol. 2017 May;125(5):303–12.

    Article  CAS  Google Scholar 

  15. da Cunha Santos G, Ko HM, Geddie WR, Boerner SL, Lai SW, Have C, et al. Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer Cytopathol. 2010;118(5):250–8.

    Article  Google Scholar 

  16. Horton Y, Ford A, MacKie MJ, Johnson PR. Rapid detection of BCR/ABL and PML/RARA using fluorescence in situ hybridization in cytospin preparations. Clin Lab Haematol. 2000;22(2):97–102.

    Article  CAS  Google Scholar 

  17. Zellweger T, Benz G, Cathomas G, Mihatsch MJ, Sulser T, Gasser TC, et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer. 2006;119(7):1660–5.

    Article  CAS  Google Scholar 

  18. Srebotnik-Kirbis I, Limback-Stokin C. Application of brush cytology for FISH-based detection of 1p/19q codeletion in oligodendroglial tumors. J Neuro-Oncol. 2016;129(3):415–22.

    Article  CAS  Google Scholar 

  19. Martini M, Capodimonti S, Cenci T, Bilotta M, Fadda G, Larocca LM, et al. To obtain more with less: Cytologic samples with ancillary molecular techniques-the useful role of liquid-based cytology. Arch Pathol Lab Med. 2018;142(3):299–307.

    Article  Google Scholar 

  20. Kumagai A, Motoi T, Tsuji K, Imamura T, Fukusato T. Detection of SYT and EWS gene rearrangements by dual-color break-apart CISH in liquid-based cytology samples of synovial sarcoma and Ewing sarcoma/primitive neuroectodermal tumor. Am J Clin Pathol. 2010;134(2):323–31.

    Article  CAS  Google Scholar 

  21. Minca EC, Lanigan CP, Reynolds JP, Wang Z, Ma PC, Cicenia J, et al. ALK status testing in non-small-cell lung carcinoma by FISH on ThinPrep slides with cytology material. J Thorac Oncol. 2014;9(4):464–8.

    Article  CAS  Google Scholar 

  22. Rosenblum F, Hutchinson LM, Garver J, Woda B, Cosar E, Kurian EM. Cytology specimens offer an effective alternative to formalin-fixed tissue as demonstrated by novel automated detection for ALK break-apart FISH testing and immunohistochemistry in lung adenocarcinoma. Cancer Cytopathol. 2014;122(11):810–21.

    Article  CAS  Google Scholar 

  23. Abati A, Sanford JS, Fetsch P, Marincola FM, Wolman SR. Fluorescence in situ hybridization (FISH): a user’s guide to optimal preparation of cytologic specimens. Diagn Cytopathol. 1995;13(5):486–92.

    Article  CAS  Google Scholar 

  24. Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47(5):703–10.

    Article  CAS  Google Scholar 

  25. Babic A, Loftin IR, Stanislaw S, Wang M, Miller R, Warren SM, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52(4):287–300.

    Article  CAS  Google Scholar 

  26. Brown RS, Edwards J, Bartlett JW, Jones C, Dogan A. Routine acid decalcification of bone marrow samples can preserve DNA for FISH and CGH studies in metastatic prostate cancer. J Histochem Cytochem. 2002;50(1):113–5.

    Article  CAS  Google Scholar 

  27. Neat MJ, Moonim MT, Dunn RG, Geoghegan H, Foot NJ. Fluorescence in situ hybridisation analysis of bone marrow trephine biopsy specimens; an additional tool in the diagnostic armoury. J Clin Pathol. 2013;66(1):54–7.

    Article  CAS  Google Scholar 

  28. Schrijver WA, van der Groep P, Hoefnagel LD, Ter Hoeve ND, Peeters T, Moelans CB, et al. Influence of decalcification procedures on immunohistochemistry and molecular pathology in breast cancer. Mod Pathol. 2016;29(12):1460–70.

    Article  CAS  Google Scholar 

  29. Bartley AN, Washington MK, Ventura CB, Ismaila N, Colasacco C, Benson AB 3rd, et al. HER2 testing and clinical decision making in Gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2016;140(12):1345–63.

    Article  Google Scholar 

  30. Yamashita-Kashima Y, Shu S, Yorozu K, Hashizume K, Moriya Y, Fujimoto-Ouchi K, et al. Importance of formalin fixing conditions for HER2 testing in gastric cancer: immunohistochemical staining and fluorescence in situ hybridization. Gastric Cancer. 2014;17(4):638–47.

    Article  CAS  Google Scholar 

  31. Khoury T, Liu Q, Liu S. Delay to formalin fixation effect on HER2 test in breast cancer by dual-color silver-enhanced in situ hybridization (dual-ISH). Appl Immunohistochem Mol Morphol. 2014;22(9):688–95.

    Article  CAS  Google Scholar 

  32. Portier BP, Wang Z, Downs-Kelly E, Rowe JJ, Patil D, Lanigan C, et al. Delay to formalin fixation ‘cold ischemia time’: effect on ERBB2 detection by in-situ hybridization and immunohistochemistry. Mod Pathol. 2013;26(1):1–9.

    Article  CAS  Google Scholar 

  33. Mascarello JT, Coley LD, Dowling PK, Garcia MV, Jewell SS, Philip R, et al. Fluorescence in situ hybridization methods for clinical laboratories; approved guideline. 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2013.

    Google Scholar 

  34. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  CAS  Google Scholar 

  35. Lawce HJ, Sanford JS. Fluorescence in situ hybridization (FISH). In: Arsham MS, Barch MJ, Lawce HJ, editors. The AGT Cytogenetics laboratory manual. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2017. p. 717–824.

    Chapter  Google Scholar 

  36. Mascarello JT, Hirsch B, Kearney HM, Ketterling RP, Olson SB, Quigley DI, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667–75.

    Article  Google Scholar 

  37. Tafe LJ, Allen SF, Steinmetz HB, Dokus BA, Cook LJ, Marotti JD, et al. Automated processing of fluorescence in-situ hybridization slides for HER2 testing in breast and gastro-esophageal carcinomas. Exp Mol Pathol. 2014;97(1):116–9.

    Article  CAS  Google Scholar 

  38. Viale G, Paterson J, Bloch M, Csathy G, Allen D, Dell’Orto P, et al. Assessment of HER2 amplification status in breast cancer using a new automated HER2 IQFISH pharmDx (Dako Omnis) assay. Pathol Res Pract. 2016;212(8):735–42.

    Article  CAS  Google Scholar 

  39. Zwaenepoel K, Merkle D, Cabillic F, Berg E, Belaud-Rotureau MA, Grazioli V, et al. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study. Exp Mol Pathol. 2015;98(1):113–8.

    Article  CAS  Google Scholar 

  40. Thakral G, Wey A, Rahman M, Fang R, Lum C. Agreement of different methods for tissue based detection of HER2 signal in invasive breast Cancer. Pathol Oncol Res. 2017;23(1):79–84.

    Article  CAS  Google Scholar 

  41. Stevens R, Almanaseer I, Gonzalez M, Caglar D, Knudson RA, Ketterling RP, et al. Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. J Mol Diagn. 2007;9(2):144–50.

    Article  CAS  Google Scholar 

  42. Barber KE, Ford AM, Harris RL, Harrison CJ, Moorman AV. MLL translocations with concurrent 3′ deletions: interpretation of FISH results. Genes Chromosomes Cancer. 2004;41(3):266–71.

    Article  CAS  Google Scholar 

  43. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.

    Article  CAS  Google Scholar 

  44. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58.

    Article  CAS  Google Scholar 

  45. Einerson RR, Law ME, Blair HE, Kurtin PJ, McClure RF, Ketterling RP, et al. Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia. 2006;20(10):1790–9.

    Article  CAS  Google Scholar 

  46. Munoz-Marmol AM, Sanz C, Tapia G, Marginet R, Ariza A, Mate JL. MYC status determination in aggressive B-cell lymphoma: the impact of FISH probe selection. Histopathology. 2013;63(3):418–24.

    Article  Google Scholar 

  47. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the international Neuroblastoma risk group (INRG) biology committee. Br J Cancer. 2009;100(9):1471–82.

    Article  CAS  Google Scholar 

  48. Peled N, Palmer G, Hirsch FR, Wynes MW, Ilouze M, Varella-Garcia M, et al. Next-generation sequencing identifies and immunohistochemistry confirms a novel crizotinib-sensitive ALK rearrangement in a patient with metastatic non-small-cell lung cancer. J Thorac Oncol. 2012;7(9):e14–6.

    Article  CAS  Google Scholar 

  49. Campbell LJ, Oei P, Brookwell R, Shortt J, Eaddy N, Ng A, et al. FISH detection of PML-RARA fusion in ins(15;17) acute promyelocytic leukaemia depends on probe size. Biomed Res Int. 2013;2013:164501.

    PubMed  PubMed Central  Google Scholar 

  50. Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR. Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer. 2016;55(4):340–9.

    Article  CAS  Google Scholar 

  51. Safar A, Wickert R, Nelson M, Neff JR, Bridge JA. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol. 1998;7(5):283–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Billy Davis and Xiao-Qiong Liu for their assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen D. Tsuchiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuchiya, K.D., Tafe, L.J., Bridge, J.A. (2019). FISH Testing of Cytology Specimens: Pre-analytic, Analytic, and Post-analytic Considerations. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics