Skip to main content

RNA-Based Assays

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology

Abstract

In addition to DNA-based assays, molecular cytopathology includes RNA-based assays. In routine clinical settings, these assays are used for the detection of relevant biomarkers to refine indeterminate morphological diagnosis and to predict treatment response. In this chapter, we will focus on a wide range of RNA-based techniques, including conventional as well as emerging assays, such as quantitative reverse transcriptase-PCR (qRT-PCR), next-generation RNA sequencing, and multiplex digital color-coded barcode technology. We provide a brief overview of the main technical aspects of RNA workflow analysis with a focus on the potential and the challenges of cytological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALK :

Anaplastic lymphoma kinase or ALK receptor tyrosine kinase

BRAF :

v-Raf murine sarcoma oncogene homolog B

DNA:

Deoxyribonucleic acid

EGFR :

Epidermal growth factor receptor

IVD:

In vitro diagnostic

LOD:

Limit of detection

MET :

MET proto-oncogene, receptor tyrosine kinase

NGS:

Next-generation sequencing

NRG1 :

Neuregulin 1

NTRK :

Neurotrophic tyrosine kinase, receptor

RET :

Proto-oncogene tyrosine-protein kinase receptor ret

ROS1 :

ROS proto-oncogene 1, receptor tyrosine kinase

RNA:

Ribonucleic acid

RT-PCR:

Reverse transcription-polymerase chain reaction

TAT:

Turnaround time

References

  1. Malapelle U, Mayo-de-Las-Casas C, Molina-Vila MA, Rosell R, Savic S, Bihl M, et al., Molecular Cytopathology Meeting Group. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 2017;125:615–26.

    Article  CAS  Google Scholar 

  2. Clark DP. Seize the opportunity: underutilization of fine-needle aspiration biopsy to inform targeted cancer therapy decisions. Cancer. 2009;117:289–97.

    PubMed  Google Scholar 

  3. Schmitt FC, Longatto-Filho A, Valent A, et al. Molecular techniques in cytopathology practice. J Clin Pathol. 2008;61:258–67.

    Article  CAS  Google Scholar 

  4. Bellevicine C, Sgariglia R, Malapelle U, Vigliar E, Nacchio M, Ciancia G, et al. Young investigator challenge: can the ion AmpliSeq Cancer Hotspot Panel v2 be used for next-generation sequencing of thyroid FNA samples? Cancer Cytopathol. 2016;124:776–84.

    Article  CAS  Google Scholar 

  5. Aisner DL, Sams SB. The role of cytology specimens in molecular testing of solid tumors: techniques, limitations, and opportunities. Diagn Cytopathol. 2012;40:511–24.

    Article  Google Scholar 

  6. Weinreb I, Bishop JA, Chiosea SI, Seethala RR, Perez-Ordonez B, Zhang L, et al. Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland. Am J Surg Pathol. 2018;42:442–52.

    Article  Google Scholar 

  7. Dietel M, Bubendorf L, Dingemans AM, Dooms C, Elmberger G, García RC, et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group. Thorax. 2016;71:177–84.

    Article  Google Scholar 

  8. Pisapia P, Lozano MD, Vigliar E, Bellevicine C, Pepe F, Malapelle U, Troncone G. ALK and ROS1 testing on lung cancer cytologic samples: perspectives. Cancer Cytopathol. 2017;125:817–30.

    Article  CAS  Google Scholar 

  9. Aisner DL, Rumery MD, Merrick DT, et al. Do more with less: tips and techniques for maximizing small biopsy and cytology specimens for molecular and ancillary testing: the University of Colorado experience. Arch Pathol Lab Med. 2016;140:1206–20.

    Article  Google Scholar 

  10. Alì G, Bruno R, Savino M, Giannini R, Pelliccioni S, Menghi M, et al. Analysis of fusion genes by nanoString system: a role in lung cytology? Arch Pathol Lab Med. 2018;142:480–9.

    Article  Google Scholar 

  11. Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochim Biophys Acta. 2009;1792:14–26.

    Article  CAS  Google Scholar 

  12. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34:721–30.

    Article  CAS  Google Scholar 

  13. Fink L, Seeger W, Ermert L, Hänze J, Stahl U, Grimminger F, et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med. 1998;4:1329–33.

    Article  CAS  Google Scholar 

  14. Malapelle U, Mayo de-Las-Casas C, Rocco D, Garzon M, Pisapia P, Jordana-Ariza N, et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 2017;116:802–10.

    Article  CAS  Google Scholar 

  15. Sgariglia R, Pisapia P, Nacchio M, De Luca C, Pepe F, Russo M, et al. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J Clin Pathol. 2017;70:803–6.

    Article  CAS  Google Scholar 

  16. Bellevicine C, Malapelle U, Vigliar E, Pisapia P, Vita G, Troncone G. How to prepare cytological samples for molecular testing. J Clin Pathol. 2017;70:819–26.

    Article  CAS  Google Scholar 

  17. Bridge JA. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: pre-analytic and analytic factors. Cancer. 2017;125:11–9.

    CAS  Google Scholar 

  18. Dejmek A, Zendehrokh N, Tomaszewska M, Edsjö A. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality. Cancer Cytopathol. 2013;121:344–53.

    Article  CAS  Google Scholar 

  19. Ladd AC, O’Sullivan-Mejia E, Lea T, Perry J, Dumur CI, Dragoescu E, et al. Preservation of fine-needle aspiration specimens for future use inRNA-based molecular testing. Cancer Cytopathol. 2011;119:102–10.

    Article  CAS  Google Scholar 

  20. Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005;33:e56.

    Article  Google Scholar 

  21. Skrypina NA, Timofeeva AV, Khaspekov GL, Savochkina LP, Beabealashvilli RS. Total RNA suitable for molecular biology analysis. J Biotechnol. 2003;105:1–9.

    Article  CAS  Google Scholar 

  22. Wilkes TM, Devonshire AS, Ellison SL, Foy CA. Evaluation of a novel approach for the measurement of RNA quality. BMC Res Notes. 2010;3:89.

    Article  Google Scholar 

  23. Zhang Y, Ni M, Liu N, Zhou Y, Chen X, Ding YB, et al. Expression and function of Pdcd4 in mouse endometrium during early pregnancy. Reproduction. 2018. pii: REP-17-0787.

    Google Scholar 

  24. Attri KS, Mehla K, Shukla SK, Singh PK. Microscale gene expression analysis of tumor-associated macrophages. Sci Rep. 2018;8:2408.

    Article  Google Scholar 

  25. Wang J, Yao A, Wang JY, Sung CC, Fink LM, Hardin JW, Hauer-Jensen M. cDNA cloning and sequencing, gene expression, and immunolocalization of thrombomodulin in the Sprague-Dawley rat. DNA Res. 1999;6:57–62.

    Article  CAS  Google Scholar 

  26. Ruiz-Villalba A, van Pelt-Verkuil E, Gunst QD, Ruijter JM, van den Hoff MJ. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR). Biomol Detect Quantif. 2017;14:7–18.

    Article  CAS  Google Scholar 

  27. Reguart N, Teixidó C, Giménez-Capitán A, Paré L, Galván P, Viteri S, et al. Identification of ALK, ROS1, and RET fusions by a multiplexed mRNA-based assay in formalin-fixed, paraffin-embedded samples from advanced non-small-cell lung Cancer patients. Clin Chem. 2017;63:751–60.

    Article  CAS  Google Scholar 

  28. Oktay MH, Adler E, Hakima L, Grunblatt E, Pieri E, Seymour A, et al. The application of molecular diagnostics to stained cytology smears. J Mol Diagn. 2016;18:407–15.

    Article  CAS  Google Scholar 

  29. Mitiushkina NV, Iyevleva AG, Poltoratskiy AN, Ivantsov AO, Togo AV, Polyakov IS, et al. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol. 2013;121:370–6.

    Article  CAS  Google Scholar 

  30. Ferraz C, Rehfeld C, Krogdahl A, Precht Jensen EM, Bösenberg E, Narz F, et al. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid. 2012;22:1025–30.

    Article  CAS  Google Scholar 

  31. Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 2017;19:341–65.

    Article  Google Scholar 

  32. Clinical and Laboratory Standards Institute. Nucleic acid sequencing methods in diagnostic laboratory medicine; approved guideline. (CLSI document MM09-A2). 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2014.

    Google Scholar 

  33. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    Article  CAS  Google Scholar 

  34. Arvidsson G, Henriksson J, Sander B, Wright AP. Mixed-species RNAseq analysis of human lymphoma cells adhering to mouse stromal cells identifies a core gene set that is also differentially expressed in the lymph node microenvironment of mantle cell lymphoma and chronic lymphocytic leukemia patients. Haematologica. 2018;103:666–78.

    Article  Google Scholar 

  35. Hynes SO, Pang B, James JA, et al. Tissue-based next generation sequencing: application in a universal healthcare system. Br J Cancer. 2017;116:553–60.

    Article  Google Scholar 

  36. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56:61–4, 66, 68, passim.

    Article  CAS  Google Scholar 

  37. Etheridge A, Wang K, Baxter D, Galas D. Preparation of small RNA NGS libraries from biofluids. Methods Mol Biol. 2018;1740:163–75.

    Article  CAS  Google Scholar 

  38. Velizheva NP, Rechsteiner MP, Wong CE, Zhong Q, Rössle M, Bode B, et al. Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung. Cancer Cytopathol. 2017;125:30–40.

    Article  CAS  Google Scholar 

  39. Guseva NV, Jaber O, Stence AA, Sompallae K, Bashir A, Sompallae R, et al. Simultaneous detection of single-nucleotide variant, deletion/insertion, and fusion in lung and thyroid carcinoma using cytology specimen and an RNA-based next-generation sequencing assay. Cancer Cytopathol. 2018;126:158–69.

    Article  CAS  Google Scholar 

  40. Troncone G. All-in-one: the dream and reality of molecular cytopathology testing on routine lung cancer smears. Cancer Cytopathol. 2018;126:155–7.

    Article  Google Scholar 

  41. Kim MH, Seo HJ, Joung JG, Kim JH. Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data. BMC Bioinformatics. 2011;12 Suppl 13:S8.

    Article  Google Scholar 

  42. Lira ME, Choi YL, Lim SM, Deng S, Huang D, Ozeck M, et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J Mol Diagn. 2014;16:229–43.

    Article  CAS  Google Scholar 

  43. Lira ME, Kim TM, Huang D, Deng S, Koh Y, Jang B, et al. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J Mol Diagn. 2013;15:51–61.

    Article  CAS  Google Scholar 

  44. Sunami K, Furuta K, Tsuta K, Sasada S, Izumo T, Nakaoku T, et al. Multiplex diagnosis of oncogenic fusion and MET exon skipping by molecular counting using formalin-fixed paraffin embedded lung adenocarcinoma tissues. J Thorac Oncol. 2016;11:203–12.

    Article  Google Scholar 

  45. Zhao W, Choi YL, Song JY, Zhu Y, Xu Q, Zhang F, et al. ALK, ROS1 and RET rearrangements in lung squamous cell carcinoma are very rare. Lung Cancer. 2016;94:22–7.

    Article  Google Scholar 

  46. Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun H, et al. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9:285–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Troncone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malapelle, U., Pisapia, P., Cieri, M., Pepe, F., Troncone, G. (2019). RNA-Based Assays. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics