Skip to main content

Molecular Diagnostics in Breast Cytology

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology
  • 1098 Accesses

Abstract

Breast cancer is the most frequent carcinoma in females. It comprises a heterogeneous group of lesions that differ by morphology, clinical presentation, tumor biology, and response to therapy. Traditional classification of breast cancer has been based on evaluation of histologic features, but molecular studies and diagnostic assays have expanded the understanding of tumor biology and are impacting diagnosis, evaluation, and treatment. Here we review the molecular classification of breast cancer, assays commonly used in clinical care, and some tests that show promise in both the early and metastatic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AJCC:

American Joint Committee on Cancer

ASCO:

American Society of Clinical Oncology

ATM :

Ataxia telangiectasia mutated

BRCA1 :

Breast cancer 1, early onset

BRCA2 :

Breast cancer 2, early onset

CAP:

College of American Pathologists

CB:

Cellblock

CDH1 :

E-cadherin

CEP17:

Centromere enumeration probe 17

cfDNA:

Cell-free circulating DNA

CHEK2 :

Checkpoint kinase 2

CNB:

Core needle biopsy

CTC:

Circulating tumor cell

ctDNA:

Circulating tumor DNA

CTLA-4 :

Cytotoxic T-lymphocyte-associated protein 4

DCIS:

Ductal carcinoma in situ

DNA:

Deoxyribonucleic acid

EGFR :

Epidermal growth factor receptor

ER:

Estrogen receptor

ERBB2 :

erb-b2 receptor tyrosine kinase 2 (HER2)

ETV6 :

ETS variant 6

FFPE:

Formalin-fixed paraffin-embedded

FISH:

Fluorescence in situ hybridization

FNA:

Fine needle aspiration

GI:

Gastrointestinal

HER2:

Human epidermal growth factor receptor 2 (ERBB2)

ICC:

Immunocytochemistry

IHC:

Immunohistochemistry

ISH:

In situ hybridization

MAML2 :

Mastermind-like protein 2

MECT1 :

Mucoepidermoid carcinoma translocated 1

MYB :

MYB proto-oncogene

NCCN:

National Comprehensive Cancer Network

NFIB :

Nuclear factor 1 B-type

NGS:

Next generation sequencing

NST:

No special type (breast carcinoma of no special type; also referred to as invasive ductal carcinoma)

NTRK :

Neurotrophic tyrosine kinase, receptor

PALB2 :

Partner and localizer of BRCA2

PARP:

Poly (ADP-ribose) polymerase

PD-1:

Programmed cell death protein 1 (CD279)

PD-L1:

Programmed death-ligand 1 (CD274)

PIK3CA :

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha

PR:

Progesterone receptor

PTEN :

Phosphatase and tensin homolog

ROR:

Risk of recurrence

RS:

Recurrence score

RT-PCR:

Reverse transcription-polymerase chain reaction

STK11 :

Serine/threonine kinase 11

TP53 :

Tumor protein 53

WHO:

World Health Organization

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med. 2009;133(1):15–25.

    PubMed  Google Scholar 

  3. Lester SC, Connolly JL, Amin MB. College of American Pathologists protocol for the reporting of ductal carcinoma in situ. Arch Pathol Lab Med. 2009;133(1):13–4.

    PubMed  Google Scholar 

  4. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med. 2010;134(6):907–22.

    PubMed  PubMed Central  Google Scholar 

  6. Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast Cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2015;33(24):2695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36(20):2105–22.

    Article  PubMed  Google Scholar 

  8. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24(2):157–67.

    Article  PubMed  Google Scholar 

  9. Hanley KZ, Birdsong GG, Cohen C, Siddiqui MT. Immunohistochemical detection of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast carcinomas: comparison on cell block, needle-core, and tissue block preparations. Cancer. 2009;117(4):279–88.

    PubMed  Google Scholar 

  10. Kinsella MD, Birdsong GG, Siddiqui MT, Cohen C, Hanley KZ. Immunohistochemical detection of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 in formalin-fixed breast carcinoma cell block preparations: correlation of results to corresponding tissue block (needle core and excision) samples. Diagn Cytopathol. 2013;41(3):192–8.

    Article  PubMed  Google Scholar 

  11. Cano G, Milanezi F, Leitao D, Ricardo S, Brito MJ, Schmitt FC. Estimation of hormone receptor status in fine-needle aspirates and paraffin-embedded sections from breast cancer using the novel rabbit monoclonal antibodies SP1 and SP2. Diagn Cytopathol. 2003;29(4):207–11.

    Article  PubMed  Google Scholar 

  12. Gong Y, Symmans WF, Krishnamurthy S, Patel S, Sneige N. Optimal fixation conditions for immunocytochemical analysis of estrogen receptor in cytologic specimens of breast carcinoma. Cancer. 2004;102(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  13. Stalhammar G, Rosin G, Fredriksson I, Bergh J, Hartman J. Low concordance of biomarkers in histopathological and cytological material from breast cancer. Histopathology. 2014;64(7):971–80.

    Article  PubMed  Google Scholar 

  14. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26(8):1533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schnitt SJ, Collins LC. Biopsy interpretation of the breast. 3rd ed. Philadelphia: Wolters Kluwer Health; 2018.

    Google Scholar 

  16. Nishimura R, Okamoto N, Satou M, Kojima K, Tanaka S. HER 2 immunohistochemistry for breast cancer cell blocks can be used in the same way as that used for histological specimens. Diagn Cytopathol. 2016;44(4):274–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Doxtader EE, Calhoun BC, Sturgis CD, Booth CN. HER2 FISH concordance in breast cancer patients with both cytology and surgical pathology specimens. J Am Soc Cytopathol. 2018;7(1):31–6.

    Article  PubMed  Google Scholar 

  18. Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.

    Article  PubMed  Google Scholar 

  19. Wolff AC, Hammond ME, Hicks DG, Allison KH, Bartlett JM, Bilous M, et al. Reply to E.A. Rakha et al. J Clin Oncol. 2015;33(11):1302–4.

    Article  PubMed  Google Scholar 

  20. Rakha EA, Pigera M, Shaaban A, Shin SJ, D’Alfonso T, Ellis IO, et al. National guidelines and level of evidence: comments on some of the new recommendations in the American Society of Clinical Oncology and the College of American Pathologists human epidermal growth factor receptor 2 guidelines for breast cancer. J Clin Oncol. 2015;33(11):1301–2.

    Article  PubMed  Google Scholar 

  21. Hammond ME, Hicks DG. American Society of Clinical Oncology/College of American Pathologists human epidermal growth factor receptor 2 testing clinical practice guideline upcoming modifications: proof that clinical practice guidelines are living documents. Arch Pathol Lab Med. 2015;139(8):970–1.

    Article  PubMed  Google Scholar 

  22. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    Article  PubMed  Google Scholar 

  23. Ali SM, Alpaugh RK, Buell JK, Stephens PJ, Yu JQ, Wu H, et al. Antitumor response of an ERBB2 amplified inflammatory breast carcinoma with EGFR mutation to the EGFR-TKI erlotinib. Clin Breast Cancer. 2014;14(1):e14–6.

    Article  CAS  PubMed  Google Scholar 

  24. Donaldson AR, Shetty S, Wang Z, Rivera CL, Portier BP, Budd GT, et al. Impact of an alternative chromosome 17 probe and the 2013 American Society of Clinical Oncology and College of American Pathologists guidelines on fluorescence in situ hybridization for the determination of HER2 gene amplification in breast cancer. Cancer. 2017;123(12):2230–9.

    Article  CAS  PubMed  Google Scholar 

  25. Llombart-Cussac A, Cortés J, Paré L, Galván P, Bermejo B, Martínez N, et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 2017;18(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  26. Ross JS, Gay LM. Comprehensive genomic sequencing and the molecular profiles of clinically advanced breast cancer. Pathology. 2017;49(2):120–32.

    Article  CAS  PubMed  Google Scholar 

  27. Hagemann IS. Molecular testing in breast cancer: a guide to current practices. Arch Pathol Lab Med. 2016;140(8):815–24.

    Article  CAS  PubMed  Google Scholar 

  28. Penault-Llorca F, Radosevic-Robin N. Ki67 assessment in breast cancer: an update. Pathology. 2017;49(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  29. Rakha EA, Green AR. Molecular classification of breast cancer: what the pathologist needs to know. Pathology. 2017;49(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  30. Robertson S, Stalhammar G, Darai-Ramqvist E, Rantalainen M, Tobin NP, Bergh J, et al. Prognostic value of Ki67 analysed by cytology or histology in primary breast cancer. J Clin Pathol. 2018;71(9):787–94.

    Article  PubMed  Google Scholar 

  31. Tang P, Tse GM. Immunohistochemical surrogates for molecular classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med. 2016;140(8):806–14.

    Article  CAS  PubMed  Google Scholar 

  32. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al. Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290–303.

    Article  PubMed  Google Scholar 

  33. Ahn S, Lee J, Cho MS, Park S, Sung SH. Evaluation of Ki-67 index in core needle biopsies and matched breast cancer surgical specimens. Arch Pathol Lab Med. 2018;142(3):364–8.

    Article  PubMed  Google Scholar 

  34. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34(10):1134–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krop I, Ismaila N, Andre F, Bast RC, Barlow W, Collyar DE, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2017;35(24):2838–47.

    Article  PubMed  Google Scholar 

  36. Amin MB, American Joint Committee on Cancer, American Cancer Society. AJCC cancer staging manual. Eight edition/editor-in-chief, Mahul B. Amin editors, Stephen B. Edge, MD, FACS and 16 others; Donna M. Gress, RHIT, CTR – Technical editor ; Laura R. Meyer, CAPM – Managing editor. Chicago: American Joint Committee on Cancer, Springer; 2017. xvii, 1024p.

    Google Scholar 

  37. Gnant M, Harbeck N, Thomssen C. St. Gallen/Vienna 2017: a brief summary of the consensus discussion about escalation and de-escalation of primary breast cancer treatment. Breast Care (Basel). 2017;12(2):102–7.

    Article  Google Scholar 

  38. NCCN Guidelines Version 1.2018 Breast Cancer. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 16 May 2018.

  39. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–8.

    Article  PubMed  Google Scholar 

  40. Paoletti C, Hayes DF. Molecular testing in breast cancer. Annu Rev Med. 2014;65:95–110.

    Article  CAS  PubMed  Google Scholar 

  41. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  42. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schnitt SJ. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol. 2010;23(Suppl 2):S60–4.

    Article  PubMed  Google Scholar 

  44. Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 2015;17:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  46. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81.

    Article  PubMed  Google Scholar 

  47. Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76.

    Article  CAS  PubMed  Google Scholar 

  49. Guiu S, Michiels S, Andre F, Cortes J, Denkert C, Di Leo A, et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol. 2012;23(12):2997–3006.

    Article  CAS  PubMed  Google Scholar 

  50. Cheang MC, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, et al. Defining breast cancer intrinsic subtypes by quantitative receptor expression. Oncologist. 2015;20(5):474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pareja F, Marchiò C, Reis-Filho JS. Molecular diagnosis in breast cancer. Diagn Histopathol. 2018;24(2):71–82.

    Article  Google Scholar 

  52. D’Alfonso TM, Mosquera JM, MacDonald TY, Padilla J, Liu YF, Rubin MA, et al. MYB-NFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features. Hum Pathol. 2014;45(11):2270–80.

    Article  PubMed  CAS  Google Scholar 

  53. Poling JS, Yonescu R, Subhawong AP, Sharma R, Argani P, Ning Y, et al. MYB labeling by immunohistochemistry is more sensitive and specific for breast adenoid cystic carcinoma than MYB labeling by FISH. Am J Surg Pathol. 2017;41(7):973–9.

    Article  PubMed  Google Scholar 

  54. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast. 4th ed. Lyon: International Agency for Research on Cancer; 2012.

    Google Scholar 

  55. Fayanju OM, Park KU, Lucci A. Molecular genomic testing for breast cancer: utility for surgeons. Ann Surg Oncol. 2018;25(2):512–9.

    Article  PubMed  Google Scholar 

  56. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  57. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373(21):2005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28(10):1677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Turashvili G, Brogi E, Morrow M, Dickler M, Norton L, Hudis C, et al. Breast carcinoma with 21-gene recurrence score lower than 18: rate of locoregional recurrence in a large series with clinical follow-up. BMC Cancer. 2018;18(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28(11):1829–34.

    Article  PubMed  Google Scholar 

  61. Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV, Ketchel SJ, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009;374(9707):2055–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jasem J, Fisher CM, Amini A, Shagisultanova E, Rabinovitch R, Borges VF, et al. The 21-gene recurrence score assay for node-positive, early-stage breast cancer and impact of RxPONDER trial on chemotherapy decision-making: have clinicians already decided? J Natl Compr Cancer Netw. 2017;15(4):494–503.

    Article  Google Scholar 

  63. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379(2):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. NCCN Guidelines Version 1.2018 Genetic/Familial High-Risk Assessment: Breast and Ovarian. https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 16 May 2018.

  65. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  CAS  PubMed  Google Scholar 

  66. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375(8):717–29.

    Article  CAS  PubMed  Google Scholar 

  67. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17(18):6012–20.

    Article  CAS  PubMed  Google Scholar 

  69. Muller BM, Keil E, Lehmann A, Winzer KJ, Richter-Ehrenstein C, Prinzler J, et al. The EndoPredict gene-expression assay in clinical practice – performance and impact on clinical decisions. PLoS One. 2013;8(6):e68252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang Y, Schnabel CA, Schroeder BE, Jerevall PL, Jankowitz RC, Fornander T, et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence. Clin Cancer Res. 2013;19(15):4196–205.

    Article  CAS  PubMed  Google Scholar 

  71. Sgroi DC, Sestak I, Cuzick J, Zhang Y, Schnabel CA, Schroeder B, et al. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population. Lancet Oncol. 2013;14(11):1067–76.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jerevall PL, Ma XJ, Li H, Salunga R, Kesty NC, Erlander MG, et al. Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer. 2011;104(11):1762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9(4):138–41.

    Article  CAS  PubMed  Google Scholar 

  74. Roy-Chowdhuri S, de Melo GD, Routbort MJ, Patel KP, Singh RR, Broaddus R, et al. Multigene clinical mutational profiling of breast carcinoma using next-generation sequencing. Am J Clin Pathol. 2015;144(5):713–21.

    Article  CAS  PubMed  Google Scholar 

  75. Santarpia L, Bottai G, Kelly CM, Gyorffy B, Szekely B, Pusztai L. Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist. 2016;21(9):1063–78.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zardavas D, Maetens M, Irrthum A, Goulioti T, Engelen K, Fumagalli D, et al. The AURORA initiative for metastatic breast cancer. Br J Cancer. 2014;111(10):1881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maetens M, Brown D, Irrthum A, Aftimos P, Viale G, Loibl S, et al. The AURORA pilot study for molecular screening of patients with advanced breast cancer-a study of the breast international group. NPJ Breast Cancer. 2017;3:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Roy-Chowdhuri S, Mehrotra M, Bolivar AM, Kanagal-Shamanna R, Barkoh BA, Hannigan B, et al. Salvaging the supernatant: next generation cytopathology for solid tumor mutation profiling. Mod Pathol. 2018;31(7):1036–45.

    Article  CAS  PubMed  Google Scholar 

  79. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    Article  CAS  PubMed  Google Scholar 

  80. Rossi G, Mu Z, Rademaker AW, Austin LK, Strickland KS, Costa RLB, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast cancer. Clin Cancer Res. 2018;24(3):560–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2012;13(7):688–95.

    Article  PubMed  Google Scholar 

  82. Stover DG, Parsons HA, Ha G, Freeman SS, Barry WT, Guo H, et al. Association of Cell-Free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer. J Clin Oncol. 2018;36(6):543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cimino-Mathews A, Foote JB, Emens LA. Immune targeting in breast cancer. Oncology (Williston Park). 2015;29(5):375–85.

    Google Scholar 

  84. Denkert C, Wienert S, Poterie A, Loibl S, Budczies J, Badve S, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod Pathol. 2016;29(10):1155–64.

    Article  CAS  PubMed  Google Scholar 

  85. Emens LA. Breast cancer immunotherapy: facts and hopes. Clin Cancer Res. 2018;24(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  86. Lalloo F, Evans DG. Familial breast cancer. Clin Genet. 2012;82(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  87. Khan A, Ellis IO, Hanby AM, Cosar ER, Rakha EA, Kandil D. Precision molecular pathology of breast cancer. New York: Springer; 2015. x, 338p.

    Google Scholar 

  88. Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. American Society of Clinical O. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2010;28(5):893–901.

    Article  PubMed  Google Scholar 

  89. Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN. Gene panel testing for inherited cancer risk. J Natl Compr Cancer Netw. 2014;12(9):1339–46.

    Article  Google Scholar 

  90. Rosai J. Why microscopy will remain a cornerstone of surgical pathology. Lab Investig. 2007;87(5):403–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza M. Quintana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quintana, L.M. (2019). Molecular Diagnostics in Breast Cytology. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics