Skip to main content

Molecular Diagnostics in Thyroid Cytology

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology
  • 1212 Accesses

Abstract

Molecular testing in thyroid fine-needle aspiration (FNA) specimens is currently aimed at refining cancer risk among nodules with indeterminate cytology. Laboratories have taken different strategies for risk stratification, including analysis of gene expression profiles, microRNA expression patterns, genotyping for driver alterations, and a combination of these approaches. This chapter will review the application of these various approaches to thyroid FNA samples, as exemplified by four commercially available tests: Afirma, RosettaGX Reveal, ThyGenX/ThyraMIR, and ThyroSeq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATA:

American Thyroid Association

AUS/FLUS:

Atypia of undetermined significance/follicular lesion of undetermined significance

BRAF :

v-raf murine sarcoma viral oncogene homolog B

CALCA :

Calcitonin-related polypeptide alpha

CEACAM5 :

Carcinoembryonic antigen-related cell adhesion molecule 5

cPTC:

Classical papillary thyroid carcinoma

DNA:

Deoxyribonucleic acid

FN/SFN:

Follicular neoplasm/suspicious for follicular neoplasm

FNA:

Fine-needle aspiration

FTC:

Follicular thyroid carcinoma

FV-PTC:

Follicular variant of papillary thyroid carcinoma

GC:

Genomic Classifier (for ThyroSeq v3)

GEC:

Gene Expression Classifier (for Afirma)

GSC:

Gene Sequencing Classifier (for Afirma)

HRAS :

HRas proto-oncogene, GTPase

KRAS :

Kirsten rat sarcoma viral oncogene homolog

KRT7 :

Cytokeratin 7

MAPK :

Mitogen-activated protein kinase

mRNA:

Messenger ribonucleic acid

MTC:

Medullary thyroid carcinoma

NIFTP:

Noninvasive follicular thyroid neoplasm with papillary-like nuclear features

NPV:

Negative predictive value

NRAS :

Neuroblastoma RAS viral oncogene

PI3K:

Phosphoinositide 3-kinase

PIK3CA :

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

PPV:

Positive predictive value

PTC:

Papillary thyroid carcinoma

PTH:

Parathyroid hormone

RET-PTC1/3 :

Gene fusion between tyrosine kinase domain of RET (ret proto-oncogene) and CCD6 gene (PTC1) or ELE1/RFG/NCOA4 gene (PTC3)

RNA:

Ribonucleic acid

ROC:

Receiver operating curve

SCG3 :

Secretogranin III

SCN9A :

Sodium voltage-gated channel alpha subunit 9

SLC5A5 :

Solute carrier family 5 member 5 (also known as NIS [sodium/iodide symporter])

SYT4 :

Synaptotagmin 4

TBSRTC:

The Bethesda System for Reporting Thyroid Cytopathology

TCGA:

The Cancer Genome Atlas

TERT :

Telomerase reverse transcriptase

TG :

Thyroglobulin

TP53 :

Tumor protein p53

TTF-1:

Thyroid transcription factor 1 (gene name: NKX2–1)

References

  1. Baloch ZW, Cooper DS, Gharib H, Alexander EK. Overview of diagnostic terminology and reporting. In: Ali S, Cibas E, editors. The Bethesda system for reporting thyroid cytopathology. Cham: Springer; 2018. p. 1–6.

    Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9.

    Article  PubMed  Google Scholar 

  4. Das DK, Al-Waheeb SK, George SS, Haji BI, Mallik MK. Contribution of immunocytochemical stainings for galectin-3, CD44, and HBME1 to fine-needle aspiration cytology diagnosis of papillary thyroid carcinoma. Diagn Cytopathol. 2014;42(6):498–505.

    Article  PubMed  Google Scholar 

  5. Wobker SE, Kim LT, Hackman TG, Dodd LG. Use of BRAF v600e immunocytochemistry on FNA direct smears of papillary thyroid carcinoma. Cancer Cytopathol. 2015;123(9):531–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ratour J, Polivka M, Dahan H, Hamzi L, Kania R, Dumuis ML, et al. Diagnosis of follicular lesions of undetermined significance in fine-needle aspirations of thyroid nodules. J Thyroid Res. 2013;2013:250347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cochand-Priollet B, Dahan H, Laloi-Michelin M, Polivka M, Saada M, Herman P, et al. Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fine-needle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid. 2011;21(10):1067–73.

    Article  CAS  PubMed  Google Scholar 

  8. Lacoste-Collin L, d’Aure D, Berard E, Rouquette I, Delisle MB, Courtade-Saidi M. Improvement of the cytological diagnostic accuracy of follicular thyroid lesions by the use of the Ki-67 proliferative index in addition to cytokeratin-19 and HBME-1 immunomarkers: a study of 61 cases of liquid-based FNA cytology with histological controls. Cytopathology. 2014;25(3):160–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bartolazzi A, Bellotti C, Sciacchitano S. Methodology and technical requirements of the galectin-3 test for the preoperative characterization of thyroid nodules. Appl Immunohistochem Mol Morphol. 2012;20(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bartolazzi A, Orlandi F, Saggiorato E, Volante M, Arecco F, Rossetto R, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008;9(6):543–9.

    Article  CAS  PubMed  Google Scholar 

  11. Smith AL, Williams MD, Stewart J, Wang WL, Krishnamurthy S, Cabanillas ME, et al. Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol. 2018;126:406–13.

    Article  CAS  PubMed  Google Scholar 

  12. Ferris RL, Baloch Z, Bernet V, Chen A, Fahey TJ 3rd, Ganly I, et al. American Thyroid Association statement on surgical application of molecular profiling for thyroid nodules: current impact on perioperative decision making. Thyroid. 2015;25(7):760–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Valderrabano P, Leon ME, Centeno BA, Otto KJ, Khazai L, McCaffrey JC, et al. Institutional prevalence of malignancy of indeterminate thyroid cytology is necessary but insufficient to accurately interpret molecular marker tests. Eur J Endocrinol. 2016;174(5):621–9.

    Article  PubMed  Google Scholar 

  14. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.

    Article  CAS  PubMed  Google Scholar 

  16. Eszlinger M, Krohn K, Frenzel R, Kropf S, Tonjes A, Paschke R. Gene expression analysis reveals evidence for inactivation of the TGF-beta signaling cascade in autonomously functioning thyroid nodules. Oncogene. 2004;23(3):795–804.

    Article  CAS  PubMed  Google Scholar 

  17. Eszlinger M, Wiench M, Jarzab B, Krohn K, Beck M, Lauter J, et al. Meta- and reanalysis of gene expression profiles of hot and cold thyroid nodules and papillary thyroid carcinoma for gene groups. J Clin Endocrinol Metab. 2006;91(5):1934–42.

    Article  CAS  PubMed  Google Scholar 

  18. Mazzanti C, Zeiger MA, Costouros NG, Umbricht C, Westra WH, Smith D, et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res. 2004;64(8):2898–903.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi ED, Bizzarro T, Martini M, Capodimonti S, Sarti D, Cenci T, et al. The evaluation of miRNAs on thyroid FNAC: the promising role of miR-375 in follicular neoplasms. Endocrine. 2016;54(3):723–32.

    Article  CAS  PubMed  Google Scholar 

  20. Dettmer M, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN. Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23(11):1383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dettmer M, Vogetseder A, Durso MB, Moch H, Komminoth P, Perren A, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab. 2013;98(1):E1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93(5):1600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18(7):2035–41.

    Article  PubMed  Google Scholar 

  24. Nishino M, Nikiforova M. Update on molecular testing for cytologically indeterminate thyroid nodules. Arch Pathol Lab Med. 2018;142(4):446–57.

    Article  PubMed  Google Scholar 

  25. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  PubMed  Google Scholar 

  26. Patel KN, Angell TE, Barbiarz J, Barth NM, Blevins TC, Duh Q, et al. Clinical validation of an improved genomic classifier for cytologically indeterminate thyroid nodules using an NGS platform and machine learning algorithms in an independent prospective multicenter blinded cohort demonstrates improved performance (conference abstract). World Congress on Thyroid Cancer. Boston, Massachusetts; 2017.

    Google Scholar 

  27. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  28. Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100(7):2743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lithwick-Yanai G, Dromi N, Shtabsky A, Morgenstern S, Strenov Y, Feinmesser M, et al. Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol. 2017;70(6):500–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  32. Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20(4):364–9.

    Article  PubMed  Google Scholar 

  33. Lastra RR, Pramick MR, Crammer CJ, LiVolsi VA, Baloch ZW. Implications of a suspicious afirma test result in thyroid fine-needle aspiration cytology: an institutional experience. Cancer Cytopathol. 2014;122(10):737–44.

    Article  PubMed  Google Scholar 

  34. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, et al. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99(11):4069–77.

    Article  CAS  PubMed  Google Scholar 

  35. Marti JL, Avadhani V, Donatelli LA, Niyogi S, Wang B, Wong RJ, et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol. 2015;22(12):3996–4001.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brauner E, Holmes BJ, Krane JF, Nishino M, Zurakowski D, Hennessey JV, et al. Performance of the Afirma gene expression classifier in Hurthle cell thyroid nodules differs from other indeterminate thyroid nodules. Thyroid. 2015;25(7):789–96.

    Article  PubMed  Google Scholar 

  37. Kloos RT, Monroe RJ, Traweek ST, Lanman RB, Kennedy GC. A genomic alternative to identify medullary thyroid cancer preoperatively in thyroid nodules with indeterminate cytology. Thyroid. 2016;26(6):785–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pankratz DG, Hu Z, Kim SY, Monroe RJ, Wong MG, Traweek ST, et al. Analytical performance of a gene expression classifier for medullary thyroid carcinoma. Thyroid. 2016;26(11):1573–80.

    Article  CAS  PubMed  Google Scholar 

  39. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised american thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diggans J, Kim SY, Hu Z, Pankratz D, Wong M, Reynolds J, et al. Machine learning from concept to clinic: reliable detection of BRAF V600e DNA mutations in thyroid nodules using high-dimensional RNA expression data. Pac Symp Biocomput. 2015:371–82.

    Google Scholar 

  41. Dettmer MS, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN. MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights. J Mol Endocrinol. 2014;52(2):181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gustafson D, Tyryshkin K, Renwick N. microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab. 2016;30(5):563–75.

    Article  CAS  PubMed  Google Scholar 

  43. Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56(6):998–1006.

    Article  CAS  PubMed  Google Scholar 

  44. Petriella D, Galetta D, Rubini V, Savino E, Paradiso A, Simone G, et al. Molecular profiling of thin-prep FNA samples in assisting clinical management of non-small-cell lung cancer. Mol Biotechnol. 2013;54(3):913–9.

    Article  CAS  PubMed  Google Scholar 

  45. Nikiforov YE. Role of molecular markers in thyroid nodule management: then and now. Endocr Pract. 2017;23(8):979–88.

    Article  PubMed  Google Scholar 

  46. Cabanillas ME, Patel A, Danysh BP, Dadu R, Kopetz S, Falchook G. BRAF inhibitors: experience in thyroid cancer and general review of toxicity. Horm Cancer. 2015;6(1):21–36.

    Article  CAS  PubMed  Google Scholar 

  47. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–35.

    Article  CAS  PubMed  Google Scholar 

  50. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  CAS  PubMed  Google Scholar 

  51. Trimboli P, Treglia G, Condorelli E, Romanelli F, Crescenzi A, Bongiovanni M, et al. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: a systematic review and meta-analysis. Clin Endocrinol. 2016;84(3):315–20.

    Article  CAS  Google Scholar 

  52. Pusztaszeri MP, Krane JF, Faquin WC. BRAF testing and thyroid FNA. Cancer Cytopathol. 2015;123(12):689–95.

    Article  PubMed  Google Scholar 

  53. Beaudenon-Huibregtse S, Alexander EK, Guttler RB, Hershman JM, Babu V, Blevins TC, et al. Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid. 2014;24(10):1479–87.

    Article  CAS  PubMed  Google Scholar 

  54. Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95(3):1365–9.

    Article  CAS  PubMed  Google Scholar 

  55. Eszlinger M, Krogdahl A, Munz S, Rehfeld C, Precht Jensen EM, Ferraz C, et al. Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid. 2014;24(2):305–13.

    Article  CAS  PubMed  Google Scholar 

  56. Eszlinger M, Piana S, Moll A, Bosenberg E, Bisagni A, Ciarrocchi A, et al. Molecular testing of thyroid fine-needle aspirations improves presurgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid. 2015;25(4):401–9.

    Article  CAS  PubMed  Google Scholar 

  57. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092–8.

    Article  CAS  PubMed  Google Scholar 

  59. Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 2015;13:184.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Paulson VA, Shivdasani P, Angell TE, Cibas ES, Krane JF, Lindeman NI, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features accounts for more than half of “carcinomas” harboring ras mutations. Thyroid. 2017;27(4):506–11.

    Article  CAS  PubMed  Google Scholar 

  61. Armstrong MJ, Yang H, Yip L, Ohori NP, McCoy KL, Stang MT, et al. PAX8/PPARgamma rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  63. Giordano TJ, Beaudenon-Huibregtse S, Shinde R, Langfield L, Vinco M, Laosinchai-Wolf W, et al. Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens. Hum Pathol. 2014;45(7):1339–47.

    Article  CAS  PubMed  Google Scholar 

  64. Krane JF, Cibas ES, Alexander EK, Paschke R, Eszlinger M. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol. 2015;123(6):356–61.

    Article  CAS  PubMed  Google Scholar 

  65. Najafian A, Noureldine S, Azar F, Atallah C, Trinh G, Schneider EB, et al. RAS mutations, and RET/PTC and PAX8/PPAR-gamma chromosomal rearrangements are also prevalent in Benign thyroid lesions: implications thereof and a systematic review. Thyroid. 2017;27(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  66. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.

    Article  CAS  PubMed  Google Scholar 

  67. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  68. Shrestha RT, Evasovich MR, Amin K, Radulescu A, Sanghvi TS, Nelson AC, et al. Correlation between histological diagnosis and mutational panel testing of thyroid nodules: a two-year institutional experience. Thyroid. 2016;26(8):1068–76.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Taye A, Gurciullo D, Miles BA, Gupta A, Owen RP, Inabnet WB 3rd, et al. Clinical performance of a next-generation sequencing assay (ThyroSeq v2) in the evaluation of indeterminate thyroid nodules. Surgery. 2018;163(1):97–103.

    Article  PubMed  Google Scholar 

  70. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer. 2017;24(3):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karunamurthy A, Panebianco F, J Hsiao S, Vorhauer J, Nikiforova MN, Chiosea S, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98(9):E1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu B, Ghossein R. Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr Pathol. 2016;27(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  74. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2014;33(42):4978–84.

    Article  CAS  PubMed  Google Scholar 

  76. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer. 2016;122(9):1370–9.

    Article  CAS  PubMed  Google Scholar 

  78. Vuong HG, Duong UN, Altibi AM, Ngo HT, Pham TQ, Tran HM, et al. A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr Connect. 2017;6(3):R8–R17.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xu B, Tuttle RM, Sabra MM, Ganly I, Ghossein R. Primary thyroid carcinoma with low-risk histology and distant metastases: clinicopathologic and molecular characteristics. Thyroid. 2017;27(5):632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682–90.

    Article  CAS  PubMed  Google Scholar 

  81. Rivera M, Ricarte-Filho J, Knauf J, Shaha A, Tuttle M, Fagin JA, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010;23(9):1191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao L, Dias-Santagata D, Sadow PM, Faquin WC. Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer Cytopathol. 2017;125:323–31.

    Article  CAS  PubMed  Google Scholar 

  83. Finnerty BM, Kleiman DA, Scognamiglio T, Aronova A, Beninato T, Fahey TJ 3rd, et al. Navigating the management of follicular variant papillary thyroid carcinoma subtypes: a classic PTC comparison. Ann Surg Oncol. 2015;22(4):1200–6.

    Article  PubMed  Google Scholar 

  84. Kim TH, Lee M, Kwon AY, Choe JH, Kim JH, Kim JS, et al. Molecular genotyping of the non-invasive encapsulated follicular variant of papillary thyroid carcinoma. Histopathology. 2018;72(4):648–61.

    Article  PubMed  Google Scholar 

  85. Ganly I, Wang L, Tuttle RM, Katabi N, Ceballos GA, Harach HR, et al. Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum Pathol. 2015;46(5):657–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rivera M, Tuttle RM, Patel S, Shaha A, Shah JP, Ghossein RA. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid. 2009;19(2):119–27.

    Article  PubMed  Google Scholar 

  87. Gupta S, Ajise O, Dultz L, Wang B, Nonaka D, Ogilvie J, et al. Follicular variant of papillary thyroid cancer: encapsulated, nonencapsulated, and diffuse: distinct biologic and clinical entities. Arch Otolaryngol Head Neck Surg. 2012;138(3):227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Howitt BE, Jia Y, Sholl LM, Barletta JA. Molecular alterations in partially-encapsulated or well-circumscribed follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23(10):1256–62.

    Article  CAS  PubMed  Google Scholar 

  89. Liu J, Singh B, Tallini G, Carlson DL, Katabi N, Shaha A, et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 2006;107(6):1255–64.

    Article  PubMed  Google Scholar 

  90. Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: A name change to Noninvasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features would help prevent overtreatment. Mod Pathol. 2016;29(7):698–707.

    Article  CAS  PubMed  Google Scholar 

  91. Vivero M, Kraft S, Barletta JA. Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  92. Seethala RR, Baloch ZW, Barletta JA, Khanafshar E, Mete O, Sadow PM, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol. 2018;31(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  93. Panebianco F, Kelly LM, Liu P, Zhong S, Dacic S, Wang X, et al. THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer. Proc Natl Acad Sci U S A. 2017;114(9):2307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghossein R. Encapsulated malignant follicular cell-derived thyroid tumors. Endocr Pathol. 2010;21(4):212–8.

    Article  PubMed  Google Scholar 

  95. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Maletta F, Massa F, Torregrossa L, Duregon E, Casadei GP, Basolo F, et al. Cytological features of “noninvasive follicular thyroid neoplasm with papillary-like nuclear features” and their correlation with tumor histology. Hum Pathol. 2016;54:134–42.

    Article  CAS  PubMed  Google Scholar 

  97. Brandler TC, Zhou F, Liu CZ, Cho M, Lau RP, Simsir A, et al. Can noninvasive follicular thyroid neoplasm with papillary-like nuclear features be distinguished from classic papillary thyroid carcinoma and follicular adenomas by fine-needle aspiration? Cancer Cytopathol. 2017;125(6):378–88.

    Article  CAS  PubMed  Google Scholar 

  98. Strickland KC, Howitt BE, Barletta JA, Cibas ES, Krane JF. Suggesting the cytologic diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): A retrospective analysis of atypical and suspicious nodules. Cancer Cytopathol. 2018;126(2):86–93.

    Article  CAS  PubMed  Google Scholar 

  99. Bizzarro T, Martini M, Capodimonti S, Straccia P, Lombardi CP, Pontecorvi A, et al. Young investigator challenge: The morphologic analysis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features on liquid-based cytology: Some insights into their identification. Cancer. 2016;124(10):699–710.

    CAS  Google Scholar 

  100. Strickland KC, Vivero M, Jo VY, Lowe AC, Hollowell M, Qian X, et al. Preoperative cytologic diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a prospective analysis. Thyroid. 2016;26(10):1466–71.

    Article  PubMed  Google Scholar 

  101. Howitt BE, Chang S, Eszlinger M, Paschke R, Drage MG, Krane JF, et al. Fine-needle aspiration diagnoses of noninvasive follicular variant of papillary thyroid carcinoma. Am J Clin Pathol. 2015;144(6):850–7.

    Article  CAS  PubMed  Google Scholar 

  102. Mito JK, Alexander EK, Angell TE, Barletta JA, Nehs MA, Cibas ES, et al. A modified reporting approach for thyroid FNA in the NIFTP era: A 1-year institutional experience. Cancer Cytopathol. 2017;125(11):854–64.

    Article  CAS  PubMed  Google Scholar 

  103. Ibrahim AA, Wu HH. Fine-needle aspiration cytology of noninvasive follicular variant of papillary thyroid carcinoma is cytomorphologically distinct from the invasive counterpart. Am J Clin Pathol. 2016;146(3):373–7.

    Article  PubMed  Google Scholar 

  104. Canberk S, Gunes P, Onenerk M, Erkan M, Kilinc E, Kocak Gursan N, et al. New concept of the encapsulated follicular variant of papillary thyroid carcinoma and its impact on the Bethesda System for Reporting Thyroid Cytopathology: a single-institute experience. Acta Cytol. 2016;60(3):198–204.

    Article  PubMed  Google Scholar 

  105. Layfield LJ, Baloch ZW, Esebua M, Kannuswamy R, Schmidt RL. Impact of the reclassification of the non-invasive follicular variant of papillary carcinoma as benign on the malignancy risk of the Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis study. Acta Cytol. 2017;61(3):187–93.

    Article  PubMed  Google Scholar 

  106. Zhou H, Baloch ZW, Nayar R, Bizzarro T, Fadda G, Adhikari-Guragain D, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). Cancer Cytopathol. 2018;126(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  107. Strickland KC, Howitt BE, Marqusee E, Alexander EK, Cibas ES, Krane JF, et al. The impact of noninvasive Follicular variant of papillary thyroid carcinoma on rates of malignancy for Fine-needle aspiration diagnostic categories. Thyroid. 2015;25(9):987–92.

    Article  PubMed  Google Scholar 

  108. Faquin WC, Wong LQ, Afrogheh AH, Ali SZ, Bishop JA, Bongiovanni M, et al. Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in The Bethesda System for Reporting Thyroid Cytopathology. Cancer Cytopathol. 2016;124(3):181–7.

    Article  PubMed  Google Scholar 

  109. Ohori NP, Wolfe J, Carty SE, Yip L, LeBeau SO, Berg AN, et al. The influence of the noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) resection diagnosis on the false-positive thyroid cytology rate relates to quality assurance thresholds and the application of NIFTP criteria. Cancer Cytopathol. 2017;125(9):692–700.

    Article  PubMed  Google Scholar 

  110. Valderrabano P, Khazai L, Thompson ZJ, Sharpe SC, Tarasova VD, Otto KJ, et al. Cancer risk associated with nuclear atypia in cytologically indeterminate thyroid nodules: a systematic review and meta-analysis. Thyroid. 2018;28(2):210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lastra RR, Birdsong G, Hwang DH, Jorda M, Kerr DA, McGrath C, et al. Preoperative cytologic interpretation of noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a 1-year multi-institutional experience. J Am Soc Cytopathol. 2018;7(2):79–85.

    Article  PubMed  Google Scholar 

  112. Samulski TD, LiVolsi VA, Wong LQ, Baloch Z. Usage trends and performance characteristics of a “gene expression classifier” in the management of thyroid nodules: an institutional experience. Diagn Cytopathol. 2016;44(11):867–73.

    Article  PubMed  Google Scholar 

  113. Jiang XS, Harrison GP, Datto MB. Young investigator challenge: molecular testing in noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Cancer. 2016;124(12):893–900.

    CAS  Google Scholar 

  114. Hang JF, Westra WH, Cooper DS, Ali SZ. The impact of noninvasive follicular thyroid neoplasm with papillary-like nuclear features on the performance of the Afirma gene expression classifier. Cancer Cytopathol. 2017;125(9):683–91.

    Article  PubMed  Google Scholar 

  115. Wong KS, Angell TE, Strickland KC, Alexander EK, Cibas ES, Krane JF, et al. Noninvasive follicular variant of papillary thyroid carcinoma and the Afirma gene-expression classifier. Thyroid. 2016;26(7):911–5.

    Article  PubMed  Google Scholar 

  116. Sahli ZT, Umbricht CB, Schneider EB, Zeiger MA. Thyroid nodule diagnostic markers in the face of the new NIFTP category: time for a reset? Thyroid. 2017;27(11):1393–9.

    Article  PubMed  Google Scholar 

  117. Cho U, Mete O, Kim MH, Bae JS, Jung CK. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod Pathol. 2017;30(6):810–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiya Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishino, M. (2019). Molecular Diagnostics in Thyroid Cytology. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics