Skip to main content

Introduction: Overview of Current Molecular Diagnostic Testing on Cytology Samples

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology

Abstract

This era of precision medicine has been marked by an accelerating pace of our understanding of the underlying biology that drives a variety of malignancies. This has been enabled by advances in our ability to screen for and detect cancers and obtain cytologic and small biopsy samples for the diagnosis of these malignancies and technological advances in the laboratory medicine sector to identify molecular genetic aberrations that drive these cancers. As the discovery of molecular biomarkers, clinical trials, and therapeutic treatment options continue to evolve, pathologists are being increasingly tasked to leverage cytology and small biopsy samples for diagnostic purposes as well as downstream molecular ancillary testing. This serves to provide guidance and information to their clinical colleagues for prognostication and appropriate clinical management. Molecular testing has been successfully applied to these samples, and this introductory chapter serves to highlight various contexts in which molecular diagnostics and cytology are closely intertwined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALK :

Anaplastic lymphoma kinase or ALK receptor tyrosine kinase

BRAF :

v-raf murine sarcoma viral oncogene homolog B

CEP:

Centromeric probe

DDIT3 :

DNA damage-inducible transcript 3

EGFR :

Epidermal growth factor receptor

EWSR1 :

Ewing sarcoma breakpoint region 1

FISH:

Fluorescence in situ hybridization

FNA:

Fine-needle aspiration

FOXO1 :

Forkhead box O1

FUS :

Fused in sarcoma

GNA11 :

Guanine nucleotide-binding protein subunit alpha-11

GNAQ :

Guanine nucleotide-binding protein G(q) subunit alpha

HER2 :

Human epidermal growth factor receptor 2 (ERBB2)

HPV:

Human papillomavirus

KIT :

KIT proto-oncogene receptor tyrosine kinase

KRAS :

Kirsten rat sarcoma viral oncogene homolog

MDM2 :

Mouse double minute 2 homolog or E3 ubiquitin protein ligase homolog (mouse)

MEK1 :

Mitogen-activated protein kinase kinase 1

MYCN :

v-myc myelocytomatosis viral oncogene homolog, neuroblastoma derived

NRAS :

Neuroblastoma RAS viral oncogene

PDGFB :

Platelet-derived growth factor β

PDGFRA :

Platelet-derived growth factor receptor A

Pter:

Terminal of chromosome short arm

Qter:

Terminal of chromosome long arm

RNA:

Ribonucleic acid

ROS1 :

ROS proto-oncogene 1, receptor tyrosine kinase

SS18 :

Synovial sarcoma translocation chromosome 18

TFE3 :

Transcription factor binding to immunoglobulin heavy constant

References

  1. Aisner DL, Sams SB. The role of cytology specimens in molecular testing of solid tumors: techniques, limitations, and opportunities. Diagn Cytopathol. 2012;40(6):511–24.

    Article  Google Scholar 

  2. Clark DP. Seize the opportunity: underutilization of fine-needle aspiration biopsy to inform targeted cancer therapy decisions. Cancer. 2009;117(5):289–97.

    PubMed  Google Scholar 

  3. Knoepp SM, Roh MH. Ancillary techniques on direct-smear aspirate slides: a significant evolution for cytopathology techniques. Cancer Cytopathol. 2013;121(3):120–8.

    Article  CAS  Google Scholar 

  4. Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.

    Article  Google Scholar 

  5. Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.

    Article  CAS  Google Scholar 

  6. Killian JK, Walker RL, Suuriniemi M, Jones L, Scurci S, Singh P, et al. Archival fine-needle aspiration cytopathology (FNAC) samples: untapped resource for clinical molecular profiling. J Mol Diagn. 2010;12(6):739–45.

    Article  CAS  Google Scholar 

  7. Rekhtman N, Roy-Chowdhuri S. Cytology specimens: a goldmine for molecular testing. Arch Pathol Lab Med. 2016;140(11):1189–90.

    Article  Google Scholar 

  8. Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, et al. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol. 2016;124(4):254–60.

    Article  CAS  Google Scholar 

  9. Beca F, Schmitt F. Growing indication for FNA to study and analyze tumor heterogeneity at metastatic sites. Cancer Cytopathol. 2014;122(7):504–11.

    Article  Google Scholar 

  10. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  Google Scholar 

  11. Barr Fritcher EG, Kipp BR, Halling KC, Clayton AC. FISHing for pancreatobiliary tract malignancy in endoscopic brushings enhances the sensitivity of routine cytology. Cytopathology. 2014;25(5):288–301.

    CAS  PubMed  Google Scholar 

  12. Barr Fritcher EG, Voss JS, Brankley SM, Campion MB, Jenkins SM, Keeney ME, et al. An optimized set of fluorescence in situ hybridization probes for detection of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology. 2015;149(7):1813–24. e1.

    Article  CAS  Google Scholar 

  13. Barroca H, Bom-Sucesso M. Fine needle biopsy with cytology in paediatrics: the importance of a multidisciplinary approach and the role of ancillary techniques. Cytopathology. 2014;25(1):6–20.

    Article  CAS  Google Scholar 

  14. Dal Cin P, Qian X, Cibas ES. The marriage of cytology and cytogenetics. Cancer Cytopathol. 2013;121(6):279–90.

    Article  CAS  Google Scholar 

  15. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  Google Scholar 

  16. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  CAS  Google Scholar 

  17. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  CAS  Google Scholar 

  18. Reynolds JP, Voss JS, Kipp BR, Karnes RJ, Nassar A, Clayton AC, et al. Comparison of urine cytology and fluorescence in situ hybridization in upper urothelial tract samples. Cancer Cytopathol. 2014;122(6):459–67.

    Article  Google Scholar 

  19. Savic S, Franco N, Grilli B, Barascud Ade V, Herzog M, Bode B, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138(1):137–44.

    Article  CAS  Google Scholar 

  20. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S1–S27.

    Article  Google Scholar 

  21. Guo M, Khanna A, Dhillon J, Patel SJ, Feng J, Williams MD, et al. Cervista HPV assays for fine-needle aspiration specimens are a valid option for human papillomavirus testing in patients with oropharyngeal carcinoma. Cancer Cytopathol. 2014;122(2):96–103.

    Article  CAS  Google Scholar 

  22. Guo M, Khanna A, Feng J, Patel S, Zhang W, Gong Y, et al. Analytical performance of cervista HPV 16/18 in SurePath pap specimens. Diagn Cytopathol. 2015;43(4):301–6.

    Article  Google Scholar 

  23. Kerr DA, Pitman MB, Sweeney B, Arpin RN 3rd, Wilbur DC, Faquin WC. Performance of the Roche cobas 4800 high-risk human papillomavirus test in cytologic preparations of squamous cell carcinoma of the head and neck. Cancer Cytopathol. 2014;122(3):167–74.

    Article  CAS  Google Scholar 

  24. Kerr DA, Sweeney B, Arpin RN 3rd, Ring M, Pitman MB, Wilbur DC, et al. Automated extraction of formalin-fixed, paraffin-embedded tissue for high-risk human papillomavirus testing of head and neck squamous cell carcinomas using the roche cobas 4800 system. Arch Pathol Lab Med. 2016;140(8):844–8.

    Article  CAS  Google Scholar 

  25. Agretti P, Ferrarini E, Rago T, Candelieri A, De Marco G, Dimida A, et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur J Endocrinol. 2012;167(3):393–400.

    Article  CAS  Google Scholar 

  26. Dettmer M, Vogetseder A, Durso MB, Moch H, Komminoth P, Perren A, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab. 2013;98(1):E1–7.

    Article  CAS  Google Scholar 

  27. Keutgen XM, Filicori F, Crowley MJ, Wang Y, Scognamiglio T, Hoda R, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012;18(7):2032–8.

    Article  CAS  Google Scholar 

  28. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93(5):1600–8.

    Article  CAS  Google Scholar 

  29. Shen R, Liyanarachchi S, Li W, Wakely PE Jr, Saji M, Huang J, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid. 2012;22(1):9–16.

    Article  CAS  Google Scholar 

  30. Bajaj J, Gimenez C, Slim F, Aziz M, Das K. Fine-needle aspiration cytology of mammary analog secretory carcinoma masquerading as low-grade mucoepidermoid carcinoma: case report with a review of the literature. Acta Cytol. 2014;58(5):501–10.

    Article  Google Scholar 

  31. Hudson JB, Collins BT. MYB gene abnormalities t(6;9) in adenoid cystic carcinoma fine-needle aspiration biopsy using fluorescence in situ hybridization. Arch Pathol Lab Med. 2014;138(3):403–9.

    Article  Google Scholar 

  32. Aisner DL, Marshall CB. Molecular pathology of non-small cell lung cancer: a practical guide. Am J Clin Pathol. 2012;138(3):332–46.

    Article  Google Scholar 

  33. Beltran H. The N-myc oncogene: maximizing its targets, regulation, and therapeutic potential. Mol Cancer Res. 2014;12(6):815–22.

    Article  CAS  Google Scholar 

  34. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  CAS  Google Scholar 

  35. Bernacki KD, Betz BL, Weigelin HC, Lao CD, Redman BG, Knoepp SM, et al. Molecular diagnostics of melanoma fine-needle aspirates: a cytology-histology correlation study. Am J Clin Pathol. 2012;138(5):670–7.

    Article  Google Scholar 

  36. da Cunha Santos G, Saieg MA, Geddie W, Leighl N. EGFR gene status in cytological samples of nonsmall cell lung carcinoma: controversies and opportunities. Cancer Cytopathol. 2011;119(2):80–91.

    Article  Google Scholar 

  37. Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst. 2014;106(2):djt435.

    Article  Google Scholar 

  38. Howell GM, Nikiforova MN, Carty SE, Armstrong MJ, Hodak SP, Stang MT, et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20(1):47–52.

    Article  Google Scholar 

  39. Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour. Lancet. 2013;382(9896):973–83.

    Article  CAS  Google Scholar 

  40. Pang NK, Nga ME, Chin SY, Ismail TM, Lim GL, Soong R, et al. KRAS and BRAF mutation analysis can be reliably performed on aspirated cytological specimens of metastatic colorectal carcinoma. Cytopathology. 2011;22(6):358–64.

    Article  CAS  Google Scholar 

  41. Sipos JA, Shah MH. Thyroid cancer: emerging role for targeted therapies. Ther Adv Med Oncol. 2010;2(1):3–16.

    Article  CAS  Google Scholar 

  42. Tothova Z, Wagner AJ. Anaplastic lymphoma kinase-directed therapy in inflammatory myofibroblastic tumors. Curr Opin Oncol. 2012;24(4):409–13.

    Article  CAS  Google Scholar 

  43. Yoon HH, Sukov WR, Shi Q, Sattler CA, Wiktor AE, Diasio RB, et al. HER-2/neu gene amplification in relation to expression of HER2 and HER3 proteins in patients with esophageal adenocarcinoma. Cancer. 2014;120(3):415–24.

    Article  CAS  Google Scholar 

  44. Kanagal-Shamanna R, Singh RR, Routbort MJ, Patel KP, Medeiros LJ, Luthra R. Principles of analytical validation of next-generation sequencing based mutational analysis for hematologic neoplasms in a CLIA-certified laboratory. Expert Rev. Mol Diagn. 2016;16(4):461–72.

    CAS  Google Scholar 

  45. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  Google Scholar 

  46. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405; blood-2016-03-643544.

    Article  CAS  Google Scholar 

  47. Ochs RC, Bagg A. Molecular genetic characterization of lymphoma: application to cytology diagnosis. Diagn Cytopathol. 2012;40(6):542–55.

    Article  Google Scholar 

  48. Bagg A. Immunoglobulin and T-cell receptor gene rearrangements: minding your B’s and T’s in assessing lineage and clonality in neoplastic lymphoproliferative disorders. J Mol Diagn. 2006;8(4):426–9; quiz 526–7.

    Article  CAS  Google Scholar 

  49. Zhang S, Abreo F, Lowery-Nordberg M, Veillon DM, Cotelingam JD. The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer Cytopathol. 2010;118(2):105–12.

    Article  Google Scholar 

  50. Maroto A, Martinez M, Martinez MA, de Agustin P, Rodriguez-Peralto JL. Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagn Cytopathol. 2009;37(9):647–53.

    Article  Google Scholar 

  51. Venkatraman L, Catherwood MA, Patterson A, Lioe TF, McCluggage WG, Anderson NH. Role of polymerase chain reaction and immunocytochemistry in the cytological assessment of lymphoid proliferations. J Clin Pathol. 2006;59(11):1160–5.

    Article  CAS  Google Scholar 

  52. Peluso AL, Ieni A, Mignogna C, Zeppa P. Lymph node fine-needle cytology: beyond flow cytometry. Acta Cytol. 2016;60(4):372–84.

    Article  CAS  Google Scholar 

  53. Grosso LE, Collins BT. DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin’s lymphoma. Acta Cytol. 1999;43(5):837–41.

    Article  CAS  Google Scholar 

  54. Langerak AW, Groenen PJ, Brüggemann M, Beldjord K, Bellan C, Bonello L, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159.

    Article  CAS  Google Scholar 

  55. Evans P, Pott C, Groenen P, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98–3936. Leukemia. 2007;21(2):207.

    Article  CAS  Google Scholar 

  56. Patel KP, Pan Q, Wang Y, Maitta RW, Du J, Xue X, et al. Comparison of BIOMED-2 versus laboratory-developed polymerase chain reaction assays for detecting T-cell receptor-γ gene rearrangements. J Mol Diagn. 2010;12(2):226–37.

    Article  CAS  Google Scholar 

  57. Baro C, Espinet B, Salido M, Garcia M, Sanchez B, Florensa L, et al. Cryptic IGH/BCL2 rearrangements with variant FISH patterns in follicular lymphoma. Leuk Res. 2011;35(2):256–9.

    Article  CAS  Google Scholar 

  58. Shin HJ, Thorson P, Gu J, Katz RL. Detection of a subset of CD30+ anaplastic large cell lymphoma by interphase fluorescence in situ hybridization. Diagn Cytopathol. 2003;29(2):61–6.

    Article  Google Scholar 

  59. Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, et al. Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood. 2005;105(9):3428–33.

    Article  CAS  Google Scholar 

  60. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood. 2014;123(18):2791–6.

    Article  CAS  Google Scholar 

  61. Scott DW, Mottok A, Ennishi D, Wright GW, Farinha P, Ben-Neriah S, et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. J Clin Oncol. 2015;33(26):2848–56.

    Article  CAS  Google Scholar 

  62. Landsburg DJ, Falkiewicz MK, Petrich AM, Chu BA, Behdad A, Li S, et al. Sole rearrangement but not amplification of MYC is associated with a poor prognosis in patients with diffuse large B cell lymphoma and B cell lymphoma unclassifiable. Br J Haematol. 2016;175(4):631–40.

    Article  CAS  Google Scholar 

  63. Li S, Desai P, Lin P, Yin CC, Tang G, Wang XJ, et al. MYC/BCL6 double-hit lymphoma (DHL): a tumour associated with an aggressive clinical course and poor prognosis. Histopathology. 2016;68(7):1090–8.

    Article  Google Scholar 

  64. Li S, Lin P, Young KH, Kanagal-Shamanna R, Yin CC, Medeiros LJMYC. BCL2 double-hit high-grade B-cell lymphoma. Adv Anat Pathol. 2013;20(5):315–26.

    Article  CAS  Google Scholar 

  65. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

    Article  CAS  Google Scholar 

  66. Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017;129(26):3403–6.

    Article  CAS  Google Scholar 

  67. Woyach JA, Ruppert AS, Guinn D, Lehman A, Blachly JS, Lozanski A, et al. BTK C481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(13):1437–43.

    Article  CAS  Google Scholar 

  68. Gulley ML, Tang W. Laboratory assays for Epstein-Barr virus-related disease. J Mol Diagn. 2008;10(4):279–92.

    Article  Google Scholar 

  69. Semenova T, Lupo J, Alain S, Perrin-Confort G, Grossi L, Dimier J, et al. Multicenter evaluation of whole-blood Epstein-Barr viral load standardization using the WHO international standard. J Clin Microbiol. 2016;54(7):1746–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Roh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roh, M.H., Kanagal-Shamanna, R. (2019). Introduction: Overview of Current Molecular Diagnostic Testing on Cytology Samples. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics