Skip to main content

Abstract

We revisit the problem of resolution of singularities of toric curves by iterating the Nash modification. We give a bound on the number of iterations required to obtain the resolution. We also introduce a different approach on counting iterations by dividing the combinatorial algorithm of the Nash modification of toric curves into several division algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanasov, A., Lopez, C., Perry, A., Proudfoot, N., Thaddeus, M.: Resolving toric varieties with Nash blow-ups. Exp. Math. 20(3), 288–303 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chávez Martínez, E., Duarte, D.: On the zero locus of ideals defining the Nash blowup of toric surfaces. Commun. Algebra (2017). https://doi.org/10.1080/00927872.2017.1335740

    Article  MathSciNet  Google Scholar 

  3. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. AMS, Providence (2011)

    Google Scholar 

  4. Duarte, D.: Nash modification on toric surfaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A Matemáticas 108(1), 153–171 (2014)

    Article  MathSciNet  Google Scholar 

  5. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4–0-2—A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de

  6. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory and Applications. Birkhauser, Boston (1994)

    Google Scholar 

  7. Gonzalez-Sprinberg, G.: Eventails en dimension 2 et transformé de Nash, Publ. de l’E.N.S., Paris, pp. 1–68 (1977)

    Google Scholar 

  8. Gonzalez-Sprinberg, G.: Résolution de Nash des points doubles rationnels. Ann. Inst. Fourier Grenoble 32(2), 111–178 (1982)

    Article  MathSciNet  Google Scholar 

  9. González, P.D., Teissier, B.: Toric geometry and the Semple-Nash modification. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A Matemáticas 108(1), 1–48 (2014)

    Article  MathSciNet  Google Scholar 

  10. Grigoriev, D., Milman, P.: Nash desingularization for binomial varieties as Euclidean division. A priori termination bound, polynomial complexity in essential dim 2. Adv. Math. 231(6), 3389–3428 (2012)

    Google Scholar 

  11. Grossman, H.: On the number of divisions in finding a G.C.D. Am. Math. Mon. 31(9), 443 (1924)

    Google Scholar 

  12. Hironaka, H.: On Nash blowing-up. In: Artin, M. (ed.) Arithmetic and Geometry II. Progress in Mathematics, vol. 36. Birkhauser, Boston, pp. 103–111 (1983)

    Chapter  Google Scholar 

  13. Lejeune-Jalabert, M., Reguera, A.: The Denef-Loefer series for toric surfaces singularities. In: Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish), Sevilla (2001); Rev. Mat. Iberoamericana 19, 581–612 (2003)

    Article  Google Scholar 

  14. Nobile, A.: Some properties of the Nash blowing-up. Pac. J. Math. 60, 297–305 (1975)

    Article  MathSciNet  Google Scholar 

  15. Rebassoo, V.: Desingularisation properties of the Nash blowing-up process. Thesis, University of Washington (1977)

    Google Scholar 

  16. Semple, J.G.: Some investigations in the geometry of curve and surface elements. Proc. Lond. Math. Soc. (3) 4, 24–49 (1954)

    Article  MathSciNet  Google Scholar 

  17. Spivakovsky, M.: Sandwiched singularities and desingularisation of surfaces by normalized Nash transformations. Ann. Math. (2) 131(3), 411–491 (1990)

    Article  MathSciNet  Google Scholar 

  18. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their careful reading and their comments. The second author would also like to thank José Seade for financial support through the project FORDECyT-265667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, D., Tripp, D.G. (2018). Nash Modification on Toric Curves. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_8

Download citation

Publish with us

Policies and ethics