Skip to main content

Newton Transformations and the Motivic Milnor Fiber of a Plane Curve

  • Chapter
  • First Online:
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Abstract

In this article we give an expression of the motivic Milnor fiber at the origin of a polynomial in two variables with coefficients in an algebraically closed field. The expression is given in terms of some motives associated to the faces of the Newton polygons appearing in the Newton algorithm. In the complex setting, we deduce a computation of the Euler characteristic of the Milnor fiber in terms of the area of the surfaces under the Newton polygons encountered in the Newton algorithm which generalizes the Milnor number computation by Kouchnirenko in the isolated case.

Pour Antonio, en témoignage de notre amitié

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A’Campo, N.: La fonction zêta d’une monodromie. Comment. Math. Helv. 50, 233–248 (1975)

    Article  MathSciNet  Google Scholar 

  2. Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: Quasi-ordinary power series and their zeta functions. Mem. Am. Math. Soc. 178(841), vi+85 (2005)

    Google Scholar 

  3. Bultot, E.: Computing zeta functions on log smooth models. C. R. Math. Acad. Sci. Paris 353(3), 261–264 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bultot, E., Nicaise, J.: Computing zeta functions on log smooth models (2016). arXiv:1610.00742

    Google Scholar 

  5. Cassou-Noguès, P., Veys, W.: Newton trees for ideals in two variables and applications. Proc. Lond. Math. Soc. (3) 108(4), 869–910 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cassou-Noguès, P., Veys, W.: The Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold. Math. Proc. Camb. Philos. Soc. 159(3), 481–515 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cauwbergs, T.: Splicing motivic zeta functions. Rev. Mat. Complut. 29(2), 455–483 (2016)

    Article  MathSciNet  Google Scholar 

  8. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7(3), 505–537 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999)

    Article  MathSciNet  Google Scholar 

  10. Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, vol. I, Barcelona, 2000. Volume 201 of Progress in Mathematics, pp. 327–348. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  11. Denef, J., Loeser, F.: Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5), 1031–1040 (2002)

    Article  MathSciNet  Google Scholar 

  12. Eisenbud, D., Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Volume 110 of Annals of Mathematics Studies. Princeton University Press, Princeton (1985)

    Google Scholar 

  13. González Pérez, P.D., González Villa, M.: Motivic Milnor fiber of a quasi-ordinary hypersurface. J. Reine Angew. Math. 687, 159–205 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Gonzalez Villa, M., Kenned, G., McEwan, L.J.: A recursive formula for the motivic milnor fiber of a plane curve (2016). arXiv:1610.08487

    Google Scholar 

  15. Guibert, G.: Espaces d’arcs et invariants d’Alexander. Comment. Math. Helv. 77(4), 783–820 (2002)

    Article  MathSciNet  Google Scholar 

  16. Guibert, G., Loeser, F., Merle, M.: Nearby cycles and composition with a nondegenerate polynomial. Int. Math. Res. Not. 31, 1873–1888 (2005)

    Article  MathSciNet  Google Scholar 

  17. Guibert, G., Loeser, F., Merle, M.: Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink. Duke Math. J. 132(3), 409–457 (2006)

    Article  MathSciNet  Google Scholar 

  18. Guibert, G., Loeser, F., Merle, M.: Composition with a two variable function. Math. Res. Lett. 16(3), 439–448 (2009)

    Article  MathSciNet  Google Scholar 

  19. Hrushovski, E., Loeser, F.: Monodromy and the Lefschetz fixed point formula. Ann. Sci. Éc. Norm. Supér. (4) 48(2), 313–349 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kontsevich, M.: Lecture at Orsay. Décembre 7 (1995)

    Google Scholar 

  21. Loeser, F.: Seattle lectures on motivic integration. In: Algebraic Geometry—Seattle 2005. Part 2. Volume 80 of Proceedings of Symposia in Pure Mathematics, pp. 745–784. American Mathematical Society, Providence (2009)

    Google Scholar 

  22. Looijenga, E.: Motivic measures. Astérisque 276, 267–297 (2002). Séminaire Bourbaki, vol. 1999/2000

    Google Scholar 

  23. Martín-Morales, J.: Monodromy zeta function formula for embedded Q-resolutions. Rev. Mat. Iberoam. 29(3), 939–967 (2013)

    Article  MathSciNet  Google Scholar 

  24. Quy-Thuong Lł.: Motivic milnor fibers of plane curve singularities (2017). arXiv:1703.04820

    Google Scholar 

  25. Raibaut, M.: Singularités à l’infini et intégration motivique. Bull. Soc. Math. Fr. 140(1), 51–100 (2012)

    Article  MathSciNet  Google Scholar 

  26. Schrauwen, R., Steenbrink, J., Stevens, J.: Spectral pairs and the topology of curve singularities. In: Complex Geometry and Lie Theory (Sundance, UT, 1989). Volume 53 of Proceedings of Symposia in Pure Mathematics, pp. 305–328. American Mathematical Society, Providence (1991).

    Google Scholar 

  27. Varchenko, A.N.: Zeta-function of monodromy and Newton’s diagram. Invent. Math. 37(3), 253–262 (1976)

    Article  MathSciNet  Google Scholar 

  28. Veys, W.: Zeta functions and “Kontsevich invariants” on singular varieties. Can. J. Math. 53(4), 834–865 (2001)

    Article  MathSciNet  Google Scholar 

  29. Wall, C.T.C.: Singular Points of Plane Curves. Volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Acknowledgements

The first author is partially supported by the projects MTM2016-76868-C2-1-P (UCM Madrid) and MTM2016-76868-C2-2-P (Zaragoza). The second author is partially supported by the project ANR-15-CE40-0008 (Dfigo). The authors thank the referees for theirs suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrette Cassou-Noguès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cassou-Noguès, P., Raibaut, M. (2018). Newton Transformations and the Motivic Milnor Fiber of a Plane Curve. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_7

Download citation

Publish with us

Policies and ethics