Skip to main content

On the Milnor Formula in Arbitrary Characteristic

  • Chapter
  • First Online:
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Abstract

The Milnor formula μ = 2δ − r + 1 relates the Milnor number μ, the double point number δ and the number r of branches of a plane curve singularity. It holds over the fields of characteristic zero. Melle and Wall based on a result by Deligne proved the inequality μ ≥ 2δ − r + 1 in arbitrary characteristic and showed that the equality μ = 2δ − r + 1 characterizes the singularities with no wild vanishing cycles. In this note we give an account of results on the Milnor formula in characteristic p. It holds if the plane singularity is Newton non-degenerate (Boubakri et al. Rev. Mat. Complut. 25:61–85, 2010) or if p is greater than the intersection number of the singularity with its generic polar (Nguyen Annales de l’Institut Fourier, Tome 66(5):2047–2066, 2016). Then we improve our result on the Milnor number of irreducible singularities (Bull. Lond. Math. Soc. 48:94–98, 2016). Our considerations are based on the properties of polars of plane singularities in characteristic p.

Dedicated to Antonio Campillo on the occasion of his 65th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boubakri, Y., Greuel G.-M., Markwig, T.: Invariants of hypersurface singularities in positive characteristic. Rev. Mat. Complut. 25, 61–85 (2010)

    Article  MathSciNet  Google Scholar 

  2. Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 813. Springer, Berlin (1980)

    Google Scholar 

  3. Campillo, A.: Hamburger-Noether expansions over rings. Trans. Am. Math. Soc. 279, 377–388 (1983)

    Article  MathSciNet  Google Scholar 

  4. Cassou-Noguès, P., Płoski, A.: Invariants of plane curve singularities and Newton diagrams. Univ. Iag. Acta Mathematica 49, 9–34 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Deligne, P.: La formule de Milnor. Sem. Geom. algébrique, Bois-Marie 1967–1969, SGA 7 II. Lecture Notes in Mathematics, 340, Exposé XVI, 197–211 (1973)

    Google Scholar 

  6. García Barroso, E., Płoski, A.: An approach to plane algebroid branches. Rev. Mat. Complut. 28, 227–252 (2015)

    Article  MathSciNet  Google Scholar 

  7. García Barroso, E., Płoski, A.: The Milnor number of plane irreducible singularities in positive characteristic. Bull. Lond. Math. Soc. 48(1), 94–98 (2016). https://doi.org/10.1112/blms/bdv095

    Article  MathSciNet  Google Scholar 

  8. Greuel, G.-M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1975)

    Article  MathSciNet  Google Scholar 

  9. Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Greuel, G.-M., Nguyen, H.D.: Some remarks on the planar Kouchnirenko’s theorem. Rev. Mat. Complut. 25, 557–579 (2012)

    Article  MathSciNet  Google Scholar 

  11. Hefez, A, Rodrigues, J.H.O., Salomão, R.: The Milnor number of a hypersurface singularity in arbitrary characteristic. arXiv: 1507.03179v1 (2015)

    Google Scholar 

  12. Hefez, A., Rodrigues, J.H.O., Salomão, R.: The Milnor number of plane branches with tame semigroup of values. arXiv: 1708.07412 (2017)

    Google Scholar 

  13. Kunz, E.: Introduction to Plane Algebraic Curves. Translated from the 1991 German edition by Richard G. Belshoff. Birkhäuser, Boston (2005)

    Google Scholar 

  14. Lê, D.T.: Calculation of Milnor number of isolated singularity of complete intersection. Funct. Anal. Appl. 8, 127–131 (1974)

    Article  Google Scholar 

  15. Merle, M.: Invariants polaires des courbes planes. Invent. Math. 41(2), 103–111 (1977)

    Article  MathSciNet  Google Scholar 

  16. Melle-Hernández, A., Wall, C.T.C.: Pencils of curves on smooth surfaces. Proc. Lond. Math. Soc. 83(2), 257–278 (2001)

    Article  MathSciNet  Google Scholar 

  17. Milnor, J.W.: Singular Points of Complex Hypersurfaces. Princeton University Press, Princeton (1968)

    MATH  Google Scholar 

  18. Nguyen, H.D.: Invariants of plane curve singularities, and Plücker formulas in positive characteristic. Annal. Inst. Fourier 66, 2047–2066 (2016)

    Article  Google Scholar 

  19. Płoski, A.: Introduction to the local theory of plane algebraic curves. In: Krasiński, T., Spodzieja, S. (eds.) Analytic and Algebraic Geometry, pp. 115–134. Łódź University Press, Łódź (2013)

    MATH  Google Scholar 

  20. Płoski, A.: Plane algebroid branches after R. Apéry. Łódź 35–44 (2014). Accesible in https://konfrogi.math.uni.lodz.pl

  21. Risler, J.J.: Sur l’idéal jacobien d’une courbe plane. Bull. Soc. Math. Fr. 99(4), 305–311 (1971)

    Article  Google Scholar 

  22. Teissier, B.: Cycles évanescents, section planes et condition de Whitney. Astérisque 7–8, 285–362 (1973)

    MATH  Google Scholar 

Download references

Acknowledgements

The first-named author was partially supported by the Spanish Project MTM 2016-80659-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelia R. García Barroso .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(\overrightarrow w=(n,m)\in ({\mathbf {N}}_+)^2\) be a weight.

Lemma A.1

Let f, g K[[x, y]] be power series without constant term. Then

$$\displaystyle \begin{aligned} i_0(f,g)\geq \frac{\left(\mathrm{ord}_{\overrightarrow w}(f) \right) \left(ord_{\overrightarrow w}(g) \right)}{mn},\end{aligned}$$

with equality if and only if the system of equations

$$\displaystyle \begin{aligned} \left\{\begin{array}{l} \mathrm{in}_{\overrightarrow w}(f)=0,\\ \\ \mathrm{in}_{\overrightarrow w}(g)=0 \end{array} \right. \end{aligned}$$

has the only solution (x, y) = (0, 0).

Proof

By a basic property of the intersection multiplicity (see for example [19, Proposition 3.8 (v)]) we have that for any nonzero power series \(\tilde f, \tilde g\)

$$\displaystyle \begin{aligned} i_0(\tilde f, \tilde g)\geq \mathrm{ord}(\tilde f) \mathrm{ord}(\tilde g), \end{aligned} $$
(7)

with equality if and only if the system of equations \(\mathrm {in}(\tilde f)=0\), \(\mathrm {in}(\tilde g)=0\) has the only solution (0, 0). Consider the power series \(\tilde f(u,v)=f(u^n,v^m)\) and \(\tilde g(u,v)=g(u^n,v^m)\). Then \(i_0(\tilde f, \tilde g)=i_0(f,g)i_0(u^n,v^m)=i_0(f,g)nm\), \(\mathrm {ord}(\tilde f)=\mathrm {ord}_{\overrightarrow w}(f)\), \(\mathrm {ord}(\tilde g)=\mathrm {ord}_{\overrightarrow w}(g)\) and the lemma follows from (7).

Lemma A.2

Let f K[[x, y]] be a non-zero power series. Then

$$\displaystyle \begin{aligned} i_0\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\geq \left(\frac{\mathrm{ord}_{\overrightarrow w}(f)}{n}-1\right)\left(\frac{\mathrm{ord}_{\overrightarrow w}(f)}{m}-1\right) \end{aligned}$$

with equality if and only if f is a semi-quasihomogeneous singularity with respect to \({\overrightarrow w}\).

Proof

The following two properties are useful:

$$\displaystyle \begin{aligned} \mathrm{ord}_{\overrightarrow w} \left(\frac{\partial f}{\partial x}\right)\geq \mathrm{ord}_{\overrightarrow w}(f)-n \;\;{\text{with equality if and only if }} \; \frac{\partial }{\partial x} \mathrm{in}_{\overrightarrow w}(f)\neq 0, \end{aligned} $$
(8)
$$\displaystyle \begin{aligned} {\text{if}} \; \frac{\partial }{\partial x} \mathrm{in}_{\overrightarrow w}(f)\neq 0 \;{\mathrm{then}} \; \mathrm{in}_{\overrightarrow w} \left(\frac{\partial f}{\partial x}\right)=\frac{\partial }{\partial x} \mathrm{in}_{\overrightarrow w}(f). \end{aligned} $$
(9)

By the first part of Lemma A.1 and Property (8) we get

$$\displaystyle \begin{aligned} \begin{array}{rcl} i_0\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)&\displaystyle \geq &\displaystyle \frac{\left(\mathrm{ord}_{\overrightarrow w}\left( \frac{\partial f}{\partial x}\right) \right) \left(ord_{\overrightarrow w} \left(\frac{\partial f}{\partial y} \right)\right)}{nm}\geq \frac{\left(\mathrm{ord}_{\overrightarrow w}(f)-n \right) \left(ord_{\overrightarrow w}(f)-m \right)}{nm}\\ &\displaystyle =&\displaystyle \left(\frac{\mathrm{ord}_{\overrightarrow w}(f)}{n}-1\right)\left(\frac{\mathrm{ord}_{\overrightarrow w}(f)}{m}-1\right). \end{array} \end{aligned} $$

Using the second part of Lemma A.1 and Properties (8) and (9) we check that \( i_0\left (\frac {\partial f}{\partial x},\frac {\partial f}{\partial y}\right )= \left (\frac {\mathrm {ord}_{\overrightarrow w}(f)}{n}-1\right )\left (\frac {\mathrm {ord}_{\overrightarrow w}(f)}{m}-1\right )\) if and only if f is a semi-quasihomogeneous singularity with respect to \({\overrightarrow w}\).

Lemma A.3 (Hensel’s Lemma [13, Theorem 16.6])

Suppose that \(\mathrm {in}_{\overrightarrow w}(f)=\psi _1\cdots \psi _s\) with pairwise coprime ψ i . Then f = g 1g s ∈K[[x, y]] with \(\mathrm {in}_{\overrightarrow w} (g_i)=\psi _i\) for i = 1, …, s.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barroso, E.R.G., Płoski, A. (2018). On the Milnor Formula in Arbitrary Characteristic. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_5

Download citation

Publish with us

Policies and ethics