Skip to main content

The Greedy Algorithm and the Cohen-Macaulay Property of Rings, Graphs and Toric Projective Curves

  • Chapter
  • First Online:
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics
  • 828 Accesses

Abstract

It is shown in this paper how a solution for a combinatorial problem obtained from applying the greedy algorithm is guaranteed to be optimal for those instances of the problem that, under an appropriate algebraic representation, satisfy the Cohen-Macaulay property known for rings and modules in Commutative Algebra. The choice of representation for the instances of a given combinatorial problem is fundamental for recognizing the Cohen-Macaulay property. Departing from an exposition of the general framework of simplicial complexes and their associated Stanley-Reisner ideals, wherein the Cohen-Macaulay property is formally defined, a review of other equivalent frameworks more suitable for graphs or arithmetical problems will follow. In the case of graph problems a better framework to use is the edge ideal of Rafael Villarreal. For arithmetic problems it is appropriate to work within the semigroup viewpoint of toric geometry developed by Antonio Campillo and collaborators.

For Antonio Campillo and Miguel Angel Revilla

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader is encouraged to prove this equivalence.

  2. 2.

    The dimension of a finitely generated ring is the maximum cardinality of an algebraically independent set. This is equivalent in R Δ to dim(Δ) + 1 and Eq. (2).

References

  1. Björner, A., Wachs, M.: Shellable nonpure complexes and posets I. Trans. Am. Math. Soc. 348(4), 1299–1327 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Campillo, A., Gimenez, P.: Syzygies of affine toric varieties. J. Algebra 225, 142–161 (2000)

    Article  MathSciNet  Google Scholar 

  4. Campillo, A., Pisón, P.: Toric mathematics from semigroup viewpoint. In: Granja, A., et al. (eds.) Ring Theory and Algebraic Geometry. Lecture Notes in Pure and Applied Mathematics, vol. 221, pp. 95–112. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  5. Campilllo, A., Revilla, M.A.: Coin exchange algorithms and toric projective curves. Commun. Algebra 29(7), 2985–2989 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex-cover. Ann. Math. 162(1), 439–485 (2005)

    Article  MathSciNet  Google Scholar 

  7. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)

    Article  MathSciNet  Google Scholar 

  8. Fröberg, R.: On Stanley-Reisner rings. Topics Algebra 26(2), 57–70 (1990). Banach Center Publications

    Google Scholar 

  9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Guo, J., Shen, Y.H., Wu, T.: Strong shellability of simplicial complexes. arXiv preprint arXiv:1604.05412 (2016)

    Google Scholar 

  12. Guo, J., Shen, Y.H., Wu, T.: Edgewise strongly shellable clutters. J. Algebra Appl. 17(1) (2018)

    Article  MathSciNet  Google Scholar 

  13. Korte, B., Lovász, L.: Greedoids and linear objective functions. SIAM J. Algebraic Disc. Methods 5(2), 229–238 (1984)

    Article  MathSciNet  Google Scholar 

  14. Kozen, D., Zaks, S.: Optimal bounds for the change-making problem. Theor. Comput. Sci. 123, 377–388 (1994)

    Article  MathSciNet  Google Scholar 

  15. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel (1985)

    Chapter  Google Scholar 

  16. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Springer, New York (2005)

    MATH  Google Scholar 

  17. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization, Algorithms and Complexity. Dover, Mineola (1998)

    Google Scholar 

  18. Stanley, R.: Combinatorics and Commutative Algebra, 2nd edn. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  19. van Tuyl, A., Villarreal, R.: Shellable graphs and sequentially Cohen–Macaulay bipartite graphs. J. Combin. Theory Ser. A 115(5), 799–814 (2008)

    Article  MathSciNet  Google Scholar 

  20. Villarreal, R.: Cohen-Macaulay graphs. Manuscripta Math. 66(3), 277–293 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Ministerio de Economía, Industria y Competitividad, Spain, project MACDA [TIN2017-89244-R] and of the Generalitat de Catalunya, project MACDA [SGR2014-890]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argimiro Arratia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arratia, A. (2018). The Greedy Algorithm and the Cohen-Macaulay Property of Rings, Graphs and Toric Projective Curves. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_17

Download citation

Publish with us

Policies and ethics