Skip to main content

An Introduction to Resolution of Singularities via the Multiplicity

  • Chapter
  • First Online:
Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Abstract

In these notes we study properties of the multiplicity at points of a variety X over a perfect field. We focus on properties that can be studied using ramification method, such as discriminants and some generalized discriminants that we shall introduce. We also show how these methods lead to an alternative proof of resolution of singularities for varieties over fields of characteristic zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, B.M.: On the characteristic functions of a local ring. Ann. Math. 91, 25–87 (1970)

    Article  MathSciNet  Google Scholar 

  2. Benito, A., Encinas, S., Villamayor, O.: Some natural properties of constructive resolution of singularities. Asian J. Math. 15, 141–192 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bravo, A., García Escamilla, M.L., Villamayor U, O.E.: On Rees algebras and invariants for singularities over perfect fields. Indiana Univ. Math. J. 61(3), 1201–1251 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bravo, A., Villamayor, O.E.: On the behavior of the multiplicity on schemes: stratification and blow ups. In: Ellwood, D., Hauser, H., Mori, S., Schicho, J. (eds.) The Resolution of Singular Algebraic Varieties. Clay Institute Mathematics Proceedings, vol. 20, pp. 81–207 (340pp.). AMS/CMI, Providence (2014)

    Google Scholar 

  5. Cossart, V., Jannsen, U., Saito, S.: Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes. Prepint, arXiv:0905.2191

    Google Scholar 

  6. Dade, E.C.: Multiplicity and Monoidal transformations. Thesis, Princeton University (1960)

    Google Scholar 

  7. Dietel, B.: A refinement of Hironaka’s group schemes for an extended invariant. Thesis, Universität Regensburg (2014)

    Google Scholar 

  8. Encinas, S., Villamayor, O.E.: A course on constructive desingularization and equivariance. In: Hauser, H., Lipman, J., Oort, F., Quiros, A. (eds.) Resolution of Singularities. A Research Textbook in Tribute to Oscar Zariski. Progress in Mathematics, vol. 181, pp. 47–227. Birkhauser, Basel (2000)

    Google Scholar 

  9. Greco, S.: Two theorems on excellent rings. Nagoya Math. J. 60, 139–149 (1976)

    Article  MathSciNet  Google Scholar 

  10. Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique, IV Étude locale des schémas et des morphismes de schémas. Publ. Math. Inst. Hautes Etudes Sci. 24 (1965)

    Google Scholar 

  11. Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing up. Springer, Berlin/Heidelberg (1988)

    Book  Google Scholar 

  12. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero I–II. Ann. Math. 79, 109–326 (1964)

    Article  Google Scholar 

  13. Hironaka, H.: Introduction to the Theory of Infinitely Near Singular Points. Memorias de Matematica del Instituto Jorge Juan, vol. 28. Concejo Superior de Investigaciones Científicas, Madrid (1974)

    Google Scholar 

  14. Lipman, J.: Equimultiplicity, reduction, and blowing up. In: Draper, R.N. (eds.) Commutative Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 68, pp. 111–147. Marcel Dekker, New York (1982)

    Google Scholar 

  15. Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics, vol. 13. J. Wiley, New York (1962)

    Google Scholar 

  16. Orbanz, U.: Multiplicities and Hilbert functions under blowing up. Manuscripta Math. 36(2), 179–186 (1981)

    Article  MathSciNet  Google Scholar 

  17. Raynaud, M.: Anneaux Lacaux Henséliens. Lecture Notes in Mathematics, vol. 169. Springer, Berlin/Heidelberg/New York (1970)

    Google Scholar 

  18. Rees, D.: \(\mathfrak {a}\)-transforms of local rings and a theorem of multiplicity. Math. Proc. Camb. Philos. Soc. 57, 8–17 (1961)

    Google Scholar 

  19. The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu (2017)

  20. Villamayor U, O.: Equimultiplicity, algebraic elimination and blowing-up. Adv. Math. 262, 313–369 (2014)

    Google Scholar 

  21. Zariski, O., Samuel, P.: Commutative Algebra, vol. 2. Van Nostrand, Princeton (1960)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Villamayor U. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sulca, D., Villamayor U., O. (2018). An Introduction to Resolution of Singularities via the Multiplicity. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_11

Download citation

Publish with us

Policies and ethics