Skip to main content

Transparent Model-Driven Provisioning of Computing Resources for Numerically Intensive Simulations

  • Conference paper
  • First Online:
Simulation Science (SimScience 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 889))

Included in the following conference series:

Abstract

Many simulations require large amounts of computing power to be executed. Traditionally, the computing power is provided by large high performance computing clusters that are solely built for this purpose. However, modern data centers do not only provide access to these high performance computing systems, but also offer other types of computing resources e.g., cloud systems, grid systems, or access to specialized computing resources, such as clusters equipped with accelerator hardware. Hence, the researcher is confronted with the choice of picking a suitable computing resource type for his simulation and acquiring the knowledge on how to access and manage his simulation on the resource type of choice. This is a time consuming and cumbersome process and could greatly benefit from supportive tooling. In this paper, we introduce a framework that allows to describe the simulation application in a resource-independent manner. It furthermore helps to select a suitable resource type according to the requirements of the simulation application and to automatically provision the required computing resources. We demonstrate the feasibility of the approach by providing a case study from the area of fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time of this writing, two versions of the TOSCA standard exist, a formalized version [12] in XML and a simplified rendering in YAML [13]. GroupTemplates and GroupTypes are currently part of the TOSCA YAML rendering, but not part of the TOSCA XML specification.

  2. 2.

    https://www.ansible.com/.

  3. 3.

    http://cloudify.co.

  4. 4.

    http://www.openstack.org.

References

  1. Ardagna, D., et al.: MODAClouds: a model-driven approach for the design and execution of applications on multiple clouds. In: 2012 4th International Workshop on Modeling in Software Engineering (MISE), pp. 50–56. IEEE, June 2012. https://doi.org/10.1109/MISE.2012.6226014

  2. Arkın, E., Tekinerdogan, B., İmre, K.M.: Model-driven approach for supporting the mapping of parallel algorithms to parallel computing platforms. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 757–773. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41533-3_46

    Chapter  Google Scholar 

  3. Bunch, C., Chohan, N., Krintz, C., Shams, K.: Neptune: a domain specific language for deploying HPC software on cloud platforms. In: Proceedings of the 2nd International Workshop on Scientific Cloud Computing, pp. 59–68. ScienceCloud 2011. ACM (2011). https://doi.org/10.1145/1996109.1996120

  4. Deiterding, R.: AMROC - Adaptive Mesh Refinement in Object-Oriented C++ (2017). http://www.vtf.website/asc/wiki/bin/view/Amroc/WebHome. Accessed 8 Nov 2017

  5. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Building a mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par 2010. LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21878-1_70

    Chapter  Google Scholar 

  6. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with deployware. In: 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID), pp. 177–184. IEEE (2008). https://doi.org/10.1109/CCGRID.2008.59

  7. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework for developing cross cloud migratable software. J. Syst. Softw. 86(9), 2294–2308 (2013). https://doi.org/10.1016/j.jss.2012.12.033

    Article  Google Scholar 

  8. Hofmann, S., Bufe, A., Brenner, G., Turek, T.: Pressure drop study on packings of differently shaped particles in milli-structured channels. Chem. Eng. Sci. 155, 376–385 (2016). https://doi.org/10.1016/j.ces.2016.08.011

    Article  Google Scholar 

  9. IBM Corporation: Introduction to IBM Platform LSF. https://www.ibm.com/support/knowledgecenter/SSETD4_9.1.2/lsf_foundations/lsf_introduction_to.html. Accessed 8 Nov 2017

  10. Limmer, S., Srba, M., Fey, D.: Performance investigation and tuning in the interoperable Cloud4E platform. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 85–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14313-2_8

    Chapter  Google Scholar 

  11. Nyrén, R., Edmonds, A., Papaspyrou, A., Metsch, T., Parák, B.: Open Cloud Computing Interface - Core, September 2016. http://ogf.org/documents/GFD.221.pdf

  12. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.0, November 2013. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html. Accessed 8 Nov 2017

  13. OASIS: TOSCA Simple Profile in YAML Version 1.1, August 2016. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.html. Accessed 8 Nov 2017

  14. Ober, I., Palyart, M., Bruel, J.M., Lugato, D.: On the use of models for high-performance scientific computing applications: an experience report. Softw. Syst. Model. 17(1), 319–342 (2018). https://doi.org/10.1007/s10270-016-0518-0

  15. Object Management Group: Model Driven Architecture. http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf. Accessed 8 Nov 2017

  16. Qasha, R., Cala, J., Watson, P.: Towards automated workflow deployment in the cloud using TOSCA. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 1037–1040. IEEE (2015). https://doi.org/10.1109/CLOUD.2015.146

  17. Quinton, C., Romero, D., Duchien, L.: SALOON: a platform for selecting and configuring cloud environments. Softw. Pract. Experience 46(1), 55–78 (2016). https://doi.org/10.1002/spe.2311

  18. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi, A.: ToscaMart: a method for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406 (2016). https://doi.org/10.1016/j.jss.2015.12.025

    Article  Google Scholar 

  19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Professional, Amsterdam (2009)

    Google Scholar 

  20. The Eclipse Foundation: Epsilon. https://eclipse.org/epsilon/. Accessed 8 Nov 2017

  21. Vukojevic-Haupt, K., Haupt, F., Leymann, F.: On-demand provisioning of workflow middleware and services into the cloud: an overview. Computing 99(2), 147–162 (2017). https://doi.org/10.1007/s00607-016-0521-x

  22. Vukojevic-Haupt, K., Haupt, F., Leymann, F., Reinfurt, L.: Bootstrapping complex workflow middleware systems into the cloud. In: 2015 IEEE 11th International Conference on e-Science, pp. 126–135. IEEE (2015). https://doi.org/10.1109/eScience.2015.69

  23. Zalila, F., Challita, S., Merle, P.: A model-driven tool chain for OCCI. In: Panetto, H., et al. (eds.) On the Move to Meaningful Internet Systems. OTM 2017 Conferences, pp. 389–409. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_26

Download references

Acknowledgements

We thank the Simulationswissenschaftliches Zentrum Clausthal-Göttingen (SWZ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Korte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korte, F., Bufe, A., Köhler, C., Brenner, G., Grabowski, J., Wieder, P. (2018). Transparent Model-Driven Provisioning of Computing Resources for Numerically Intensive Simulations. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds) Simulation Science. SimScience 2017. Communications in Computer and Information Science, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-96271-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96271-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96270-2

  • Online ISBN: 978-3-319-96271-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics