Skip to main content

Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems

  • Chapter
  • First Online:
Atlas of Ecosystem Services

Abstract

Pollination of wild and crop plants by animal pollinators is a key ecosystem service that is important to human welfare. Across Europe, climatic conditions are the most important drivers of occurrence and richness of pollinators followed by land cover and soil conditions. However, the example of recent range shifts of important pollinators such as the bumblebees shows that northern range expansions can be limited while southern range contractions can be considerable, leading to severe consequences under future scenarios. The way we utilize our landscape is a likely reason for such strong effects since the response to changing temperature conditions strongly depends on the amount of semi-natural area available in a landscape. In particular, the number of bee species is less sensitive to increasing temperatures when the amount of semi-natural habitat is high, while species richness drastically declines in intensively used agricultural landscapes and even more so with increasing temperatures. Such interactive effects of major drivers of global change bear a big chance for enhancing resilience in pollinator communities and thus in food production systems, e.g. by increasing the amount of semi-natural habitat as is the goal of the EU strategy for Green Infrastructure and some of the regulations in the EU Common Agricultural Policy (CAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321–6.

    Article  Google Scholar 

  2. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B Biol Sci. 2007;274(1608):303–13.

    Article  Google Scholar 

  3. Gallai N, Salles JM, Settele J, Vaissiere BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68(3):810–21.

    Article  Google Scholar 

  4. Eilers EJ, Kremen C, Greenleaf SS, Garber AK, Klein AM. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One. 2011;6(6):e21363.

    Article  CAS  Google Scholar 

  5. Kearns CA, Inouye DW, Waser NM. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst. 1998;29:83–112.

    Article  Google Scholar 

  6. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013;339(6127):1608–11.

    Article  CAS  Google Scholar 

  7. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313(5785):351–4.

    Article  CAS  Google Scholar 

  8. IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, et al., editors. 2016. https://www.actu-environnement.com/media/pdf/news-26331-synthese-ipbes-decideurs-pollinisateurs.pdf. Accessed 11 Oct 2017.

  9. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345–53.

    Article  Google Scholar 

  10. Gonzalez-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol. 2013;28(9):524–30.

    Article  Google Scholar 

  11. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, et al. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev Camb Philos Soc. 2010;85(4):777–95.

    Google Scholar 

  12. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.

    Article  CAS  Google Scholar 

  13. IPCC. Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al., editors. Climate change 2014: impacts, adaptation, and vulnerability part A: global and sectoral aspects contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1–32.

    Google Scholar 

  14. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.

    Article  CAS  Google Scholar 

  15. Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat Clim Chang. 2012;2(9):686–90.

    Article  Google Scholar 

  16. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Climate change impacts on bumblebees converge across continents. Science. 2015;349(6244):177–80.

    Article  CAS  Google Scholar 

  17. Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts S, Biesmeijer JC, et al. Climatic risk and distribution Atlas of European Bumblebees. BioRisk. 2015;10:1–236.

    Article  Google Scholar 

  18. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Relocation risky for bumblebee colonies—response. Science. 2015;350(6258):287.

    Article  CAS  Google Scholar 

  19. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuss R, Putz T, et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 2011;10(3):955–73.

    Article  Google Scholar 

  20. Papanikolaou AD, Kühn I, Frenzel M, Schweiger O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol. 2017;54(2):527–36.

    Article  Google Scholar 

  21. Council Regulation (EC). No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Off J Eur Union. 2013;L347:608–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schweiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schweiger, O. et al. (2019). Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems. In: Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C. (eds) Atlas of Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-319-96229-0_17

Download citation

Publish with us

Policies and ethics