Skip to main content

Assessment of Soil Functions Affected by Soil Management

  • Chapter
  • First Online:
Atlas of Ecosystem Services

Abstract

Soil plays a central role in the functioning of terrestrial systems. This role is at risk given the enormous loss of soil through desertification and degradation amounting to 12 million hectares per year [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ELD Initiative. Report for policy and decision makers: reaping economic and environmental benefits from sustainable land management. 2015. Available from www.eld-initiative.org. Accessed 7 Oct 2017.

    Google Scholar 

  2. Wilson EO. The little things that run the world (the importance and conservation of invertebrates). Conserv Biol. 1987;1(4):344–6.

    Article  Google Scholar 

  3. European Environment Agency. Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions – Thematic Strategy for Soil Protection. [SEC(2006)620] [SEC(2006)1165]. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN. Accessed 7 Oct 2017.

  4. Blum WEH. Soil protection concept of the Council of Europe and Integrated Soil Research. In: Eijsackers HJP, Hamers T, editors. Integrated soil and sediment research: a basis for proper protection. Dordrecht: Springer; 1993. p. 37–47.

    Chapter  Google Scholar 

  5. Baveye PC, Baveye J, Gowdy J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front Environ Sci. 2016;4:41.

    Article  Google Scholar 

  6. Spangenberg JH, Görg C, Truong DT, Tekken V, Bustamante JV, Settele J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int J Biodivers Sci Ecosyst Serv Manag. 2014;10(1):40–53.

    Article  Google Scholar 

  7. Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science. 2004;304:1634–7.

    Article  CAS  Google Scholar 

  8. Lima ACR, Brussaard L, Totola MR, Hoogmoed WB, de Goede RGM. A functional evaluation of three indicator sets for assessing soil quality. Appl Soil Ecol. 2013;64:194–200.

    Article  Google Scholar 

  9. Dominati E, Mackay A, Green S, Patterson M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: a case study of pastoral agriculture in New Zealand. Ecol Econ. 2014;100:119–29.

    Article  Google Scholar 

  10. Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Pérès G, et al. Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Curr Opin Environ Sustain. 2012;4(5):529–38.

    Article  Google Scholar 

  11. Smit E, Bakker PAHM, Bergmans H, Bloem J, Griffiths BS, Rutgers M, et al. General surveillance of the soil ecosystem: an approach to monitoring unexpected adverse effects of GMO’S. Ecol Indic. 2012;14:107–13.

    Article  Google Scholar 

  12. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003;54(4):655–70.

    Article  Google Scholar 

  13. Schloter M, Dilly O, Munch JC. Indicators for evaluating soil quality. Agric Ecosyst Environ. 2003;98:255–62.

    Article  Google Scholar 

  14. Wall DH, Bardgett RD, Kelly E. Biodiversity in the dark. Nat Geosci. 2010;3(5):297–8.

    Article  CAS  Google Scholar 

  15. Brussaard L, de Ruiter PC, Brown GG. Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ. 2007;121:233–44.

    Article  Google Scholar 

  16. Briones MJI. Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci. 2014;2(7):1–22.

    Google Scholar 

  17. Stone D, Ritz K, Griffiths BG, Orgiazzi A, Creamer RE. Selection of biological indicators appropriate for European soil monitoring. Appl Soil Ecol. 2016;97:12–22.

    Article  Google Scholar 

  18. Barrios E. Soil biota, ecosystem services and land productivity. Ecol Econ. 2007;64:269–85.

    Article  Google Scholar 

  19. Ruiz S, Schymanski S, Or D. Soil penetration rates by earthworms and plant roots-mechanical and energetic considerations. EGU Gen Assem Conf Abstr. 2016;18:8035.

    Google Scholar 

  20. Minasny B, Whelan BM, Triantafilis J, McBratney AB. Pedometrics research in the Vadose Zone—review and perspectives. Vadose Zone J. 2013;12:vzj2012.0141. https://doi.org/10.2136/vzj2012.0141.

    Article  Google Scholar 

  21. Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D, Roose T, et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. 2016;15:57. https://doi.org/10.2136/vzj2015.09.0131.

    Article  CAS  Google Scholar 

  22. Franko U, Kolbe H, Thiel E, Ließ E. Multi-site validation of a soil organic matter model for arable fields based on generally available input data. Geoderma. 2011;166:119–34.

    Article  CAS  Google Scholar 

  23. Franko U, Spiegel H. Modeling soil organic carbon dynamics in an Austrian long-term tillage field experiment. Soil Tillage Res. 2016;156:83–90.

    Article  Google Scholar 

  24. BGR, Federal Office for Geology and Raw Materials. Soil and land use map of the Federal Republic of Germany 1:1.000.000 (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR Nutzungsdifferenzierte Bodenübersichtskarte 1:1.000.000 (BÜK 1000 N), Version 2.3.1). Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe; 2007.

    Google Scholar 

  25. DWD. WebWerdis – weather request and distribution system: annual mean temperature (1981–2010) and annual mean precipitation (1981–2010). 2012.

    Google Scholar 

  26. Franko U, Oelschlägel B. Einfluß von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Arch Agron Soil Sci. 1995;39:155–63.

    Article  CAS  Google Scholar 

  27. Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang. 2014;4:678–83.

    Article  Google Scholar 

  28. Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P. Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ. 2014;187:87–105.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are affiliated to the BonaRes Centre for Soil Research funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding measure “Soil as a Sustainable Resource for the Bioeconomy—BonaRes”, project “BonaRes (Module B): BonaRes Centre for Soil Research” (grant 031A608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, HJ. et al. (2019). Assessment of Soil Functions Affected by Soil Management. In: Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C. (eds) Atlas of Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-319-96229-0_13

Download citation

Publish with us

Policies and ethics