Skip to main content

Etiopathogenesis of NAFLD: Diet, Gut, and NASH

  • Chapter
  • First Online:
Non-Alcoholic Fatty Liver Disease

Abstract

In recent years, advancements in the knowledge of gut microbiota and its relationship with human pathophysiology led to the finding that gut microbiota is deeply implicated in the pathogenesis of liver steatosis and the progression to nonalcoholic steatohepatitis (NASH) and liver fibrosis.

Gut microbiota composition and gene expression are independently linked to NAFLD, as well as to many known risk factors for NAFLD such as obesity and insulin resistance. Furthermore, gut microbiota composition and function are deeply affected by diet and lifestyle. Diets rich in saturated fats, fructose, and cholesterol alter the gut microbiota and intestinal barrier function, favoring the onset and progression of NAFLD. Gut dysbiosis may affect several metabolic pathways, both through direct and indirect mechanisms (e.g., production of short-chain fatty acids, interaction with bile acid metabolism, modulation of intestine-derived hormones), eventually leading to increased hepatic de novo lipogenesis and alterations in glucose and lipid metabolism that perpetuate liver damage. Gut dysbiosis also leads to increased intestinal permeability and translocation of microorganisms and microbial products into the portal circulation (metabolic endotoxemia), triggering pro-inflammatory processes in the liver.

Available strategies to manipulate gut microbiota include the use of probiotic, prebiotic, or synbiotic supplements, or antibiotic treatment. Fecal microbiota transplantation has emerged as a further potential tool to modify gut microbiota composition. Novel therapeutic strategies include targeting the nuclear farnesoid X receptor (FXR), a transcription factor involved in the regulation of bile, glucose, and lipid metabolism, and the use of absorbents that bind to toxic metabolites in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology. 2016;150:1745–1755.e3.

    PubMed  Google Scholar 

  2. Pedersen HK, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    CAS  PubMed  Google Scholar 

  3. Rabot S, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010;24:4948–59.

    CAS  PubMed  Google Scholar 

  4. Le Roy T, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62:1787–94.

    PubMed  Google Scholar 

  5. Loomba R, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–1062.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boursier J, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.

    CAS  PubMed  Google Scholar 

  7. de Wit NJW, Afman LA, Mensink M, Müller M. Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol. 2012;57:1370–3.

    PubMed  Google Scholar 

  8. Miele L, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–87.

    CAS  PubMed  Google Scholar 

  9. Luther J, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–32.

    PubMed  PubMed Central  Google Scholar 

  10. Serino M, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–53.

    CAS  PubMed  Google Scholar 

  11. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41–50.

    PubMed  Google Scholar 

  12. Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab. 2011;22:458–66.

    CAS  PubMed  Google Scholar 

  13. Gadaleta RM, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–72.

    CAS  PubMed  Google Scholar 

  14. Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974;27:1341–7.

    CAS  PubMed  Google Scholar 

  15. Chu H, Williams B, Schnabl B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res. 2018;2:43–51.

    PubMed  PubMed Central  Google Scholar 

  16. Mouzaki M, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One. 2016;11:e0151829.

    PubMed  PubMed Central  Google Scholar 

  17. Neuschwander-Tetri BA, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65.

    CAS  PubMed  Google Scholar 

  18. Parséus A, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429–37.

    PubMed  Google Scholar 

  19. Islam KBMS, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–81.

    CAS  PubMed  Google Scholar 

  20. Burkitt DP, Walker AR, Painter NS. Dietary fiber and disease. JAMA. 1974;229:1068–74.

    CAS  PubMed  Google Scholar 

  21. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

    PubMed  PubMed Central  Google Scholar 

  22. Donohoe DR, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Donohoe DR, Wali A, Brylawski BP, Bultman SJ. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One. 2012;7:e46589.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. De Vadder F, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96.

    PubMed  Google Scholar 

  25. Thorburn AN, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.

    CAS  PubMed  Google Scholar 

  26. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133:2485S–93S.

    CAS  PubMed  Google Scholar 

  27. Samuel BS, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105:16767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol. 2014;54:407–34.

    CAS  PubMed  Google Scholar 

  29. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–73.

    CAS  PubMed  Google Scholar 

  30. Liu R, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    CAS  PubMed  Google Scholar 

  31. Dodd D, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Obeid R, et al. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am J Clin Nutr. 2016;103(3):703–11. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.3945%2Fajcn.115.121269.

    CAS  PubMed  Google Scholar 

  33. Shan Z, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888–94. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.3945%2Fajcn.117.157107.

    CAS  PubMed  Google Scholar 

  34. Wilson Tang WH, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1056%2FNEJMoa1109400.

    Google Scholar 

  35. Pingitore A, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19:257–65.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas C, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe M, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152:1679–1694.e3.

    Article  PubMed  CAS  Google Scholar 

  39. Bäckhed F, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Canfora EE, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep. 2017;7:2360.

    PubMed  PubMed Central  Google Scholar 

  41. Fernandes J, Vogt J, Wolever TMS. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr. 2012;66:1029–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouter K, et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol. 2018;9:155.

    PubMed  PubMed Central  Google Scholar 

  43. Chambers ES, et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes Metab. 2018;20:1034–9.

    CAS  PubMed  Google Scholar 

  44. Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan metabolic crosstalk in human insulin resistance. Physiol Rev. 2018;98:1371–415.

    CAS  PubMed  Google Scholar 

  45. David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    CAS  PubMed  Google Scholar 

  46. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.

    PubMed  PubMed Central  Google Scholar 

  47. Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cotillard A, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    CAS  PubMed  Google Scholar 

  49. Kovatcheva-Datchary P, et al. Dietary Fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.

    CAS  PubMed  Google Scholar 

  50. Walker AW, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–30.

    CAS  PubMed  Google Scholar 

  51. Ley RE, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Muegge BD, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schnorr SL, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.

    CAS  PubMed  Google Scholar 

  54. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Obregon-Tito AJ, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015;6:6505.

    CAS  PubMed  Google Scholar 

  56. Clemente JC, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1:e1500183.

    PubMed  PubMed Central  Google Scholar 

  57. Koeth RA, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu GD, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63–72.

    CAS  PubMed  Google Scholar 

  59. Gratz SW, et al. Dietary carbohydrate rather than protein intake drives colonic microbial fermentation during weight loss. Eur J Nutr. 2019;58:1147–58.

    CAS  PubMed  Google Scholar 

  60. Devkota S, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    CAS  PubMed  Google Scholar 

  62. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–7.

    CAS  PubMed  Google Scholar 

  63. Shi H, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cani PD, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    CAS  PubMed  Google Scholar 

  65. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22:658–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Beek CM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metab Clin Exp. 2018;87:25–35.

    PubMed  Google Scholar 

  67. Rahat-Rozenbloom S, Fernandes J, Cheng J, Wolever TMS. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur J Clin Nutr. 2017;71:953–8.

    CAS  PubMed  Google Scholar 

  68. Chassaing B, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Suez J, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6.

    CAS  PubMed  Google Scholar 

  70. Zeevi D, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–95.

    CAS  PubMed  Google Scholar 

  71. Sowah SA, et al. Effects of weight-loss interventions on short-chain fatty acid concentrations in blood and feces of adults: a systematic review. Adv Nutr. 2019;10:673–84.

    PubMed  PubMed Central  Google Scholar 

  72. Heianza Y, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS lost trial. Gut. 2019;68:263–70.

    CAS  PubMed  Google Scholar 

  73. Wang Z, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40:583–94.

    CAS  PubMed  Google Scholar 

  74. Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front Physiol. 2019;10:428.

    PubMed  PubMed Central  Google Scholar 

  75. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.

    CAS  PubMed  Google Scholar 

  76. Christiansen CB, et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol. 2018;315:G53–65.

    CAS  PubMed  Google Scholar 

  77. Tolhurst G, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamaguchi Y, et al. Association of Intestinal Microbiota with metabolic markers and dietary habits in patients with type 2 diabetes. Digestion. 2016;94:66–72.

    CAS  PubMed  Google Scholar 

  79. Batterham RL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    CAS  PubMed  Google Scholar 

  80. Batterham RL, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    CAS  PubMed  Google Scholar 

  81. Lin HV, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin AM, et al. The diverse metabolic roles of peripheral serotonin. Endocrinology. 2017;158:1049–63.

    CAS  PubMed  Google Scholar 

  83. Young RL, et al. Augmented capacity for peripheral serotonin release in human obesity. Int J Obes. 2018;42:1880–9.

    CAS  Google Scholar 

  84. Crane JD, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166–72.

    CAS  PubMed  Google Scholar 

  85. Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    PubMed  Google Scholar 

  87. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    CAS  PubMed  Google Scholar 

  88. Ridaura VK, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    PubMed  Google Scholar 

  89. Haro C, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.

    CAS  PubMed  Google Scholar 

  90. Santos-Marcos JA, Perez-Jimenez F, Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutr Biochem. 2019;70:1–27.

    CAS  PubMed  Google Scholar 

  91. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

    CAS  PubMed  Google Scholar 

  92. Dao MC, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.

    CAS  PubMed  Google Scholar 

  93. Muñiz Pedrogo DA, et al. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet. Mayo Clin Proc. 2018;93:1104–10.

    PubMed  Google Scholar 

  94. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    PubMed  Google Scholar 

  95. Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwiertz A, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–5.

    Google Scholar 

  97. Mouzaki M, Allard JP. The role of nutrients in the development, progression, and treatment of nonalcoholic fatty liver disease. J Clin Gastroenterol. 2012;46:457–67.

    PubMed  Google Scholar 

  98. Zelber-Sagi S, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68:1239–46.

    CAS  PubMed  Google Scholar 

  99. Duncan SH, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32:1720–4.

    CAS  Google Scholar 

  100. Fava F, et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes. 2013;37:216–23.

    CAS  Google Scholar 

  101. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1101.e2.

    CAS  PubMed  Google Scholar 

  102. Zhou X, et al. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PLoS One. 2014;9:e115148.

    PubMed  PubMed Central  Google Scholar 

  103. Giorgio V, et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46:556–60.

    PubMed  Google Scholar 

  104. Jin R, et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int J Hepatol. 2014;2014:560620.

    PubMed  PubMed Central  Google Scholar 

  105. Bischoff SC, et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.

    PubMed  PubMed Central  Google Scholar 

  106. Tripathi A, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Duarte SMB, Stefano JT, Oliveira CP. Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann Hepatol. 2019;18:416–21.

    PubMed  Google Scholar 

  108. Zhu L, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–9.

    CAS  PubMed  Google Scholar 

  109. Kirpich IA, et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2012;36:835–46.

    CAS  PubMed  Google Scholar 

  110. Liu J, Han L, Zhu L, Yu Y. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids Health Dis. 2016;15:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Muccioli GG, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.

    PubMed  PubMed Central  Google Scholar 

  112. Cani PD. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect. 2012;18(Suppl 4):50–3.

    CAS  PubMed  Google Scholar 

  113. Chen Y, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Del Chierico F, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017;65:451–64.

    PubMed  Google Scholar 

  115. Rinella ME, Tacke F, Sanyal AJ, Anstee QM, participants of the AASLD/EASL Workshop. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J Hepatol. 2019;71:823–33. https://doi.org/10.1002/hep.30782.

    Article  PubMed  Google Scholar 

  116. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402.

    Google Scholar 

  117. Álvarez-Mercado AI, et al. Microbial population changes and their relationship with human health and disease. Microorganisms. 2019;7:68.

    PubMed Central  Google Scholar 

  118. Baars A, Oosting A, Knol J, Garssen J, van Bergenhenegouwen J. The gut microbiota as a therapeutic target in IBD and metabolic disease: a role for the bile acid receptors FXR and TGR5. Microorganisms. 2015;3:641–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012;32:701–11.

    CAS  PubMed  Google Scholar 

  120. Brandi G, et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis. 2017;38:231–40.

    CAS  PubMed  Google Scholar 

  121. Rahman K, et al. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733–746.e12.

    CAS  PubMed  Google Scholar 

  122. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 2017;64:413–7.

    CAS  PubMed  Google Scholar 

  123. Wong VW-S, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12:256–62.

    CAS  PubMed  Google Scholar 

  124. Engstler AJ, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut. 2016;65:1564–71.

    CAS  PubMed  Google Scholar 

  125. Bakker GJ, Nieuwdorp M. Fecal microbiota transplantation: therapeutic potential for a multitude of diseases beyond Clostridium difficile. Microbiol Spectr. 2017;5.

    Google Scholar 

  126. Hu J, Luo H, Jiang Y, Chen P. Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice. Oncotarget. 2017;8:38161–75.

    Google Scholar 

  127. Gangarapu V, et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27:840–5.

    Google Scholar 

  128. Terveer EM, et al. Faecal microbiota transplantation in clinical practice. Gut. 2018;67:196.

    CAS  PubMed  Google Scholar 

  129. Cammarota G, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66:569–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Miele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miele, L. et al. (2020). Etiopathogenesis of NAFLD: Diet, Gut, and NASH. In: Bugianesi, E. (eds) Non-Alcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95828-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95828-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95827-9

  • Online ISBN: 978-3-319-95828-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics