Skip to main content

NAFLD and Insulin Resistance: A Multisystemic Disease

  • Chapter
  • First Online:
Non-Alcoholic Fatty Liver Disease

Abstract

NAFLD is an emerging metabolic disease that is affecting almost 25% of the world population. NAFLD is more prevalent in obese subjects or in patients with type 2 diabetes (T2D) where the prevalence is much higher. The pathophysiology of NAFLD is still not completely understood. However, alteration in both glucose and lipid metabolism, mainly because of impairment in insulin action (i.e., insulin resistance) and insulin secretion, is among the major causes of hepatic fat accumulation (steatosis) and its progression to more severe liver disease including nonalcoholic steatohepatitis (NASH). In this chapter, I reviewed the current knowledge on insulin resistance in NAFLD and its impact on the metabolic cross talk among liver, muscle, and adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acids

AKT:

Protein kinase B

BCAA:

Branched chain amino acids

DAG:

Diacylglycerols

DNL:

De novo lipogenesis

EGP:

Endogenous glucose production

FFA:

Free fatty acids

FOXO1:

Forkhead box protein O1

GNG:

Gluconeogenesis

Hep-IR:

Hepatic insulin resistance

IHTG:

Intrahepatic TG

IR:

Insulin resistance

IRS-1 and IRS-2:

Insulin receptor substrates

OGTT:

Oral glucose tolerance test

PEPCK:

Phosphoenol-pyruvate carboxykinase

Ra:

Rate of appearance

T2D:

Type 2 diabetes

TG:

Triglyceride

References

  1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. https://doi.org/10.1038/nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

    Article  PubMed  Google Scholar 

  3. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E, Rizzetto M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48(4):634–42. https://doi.org/10.1007/s00125-005-1682-x.

    Article  CAS  PubMed  Google Scholar 

  4. Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5(5):1544–60. https://doi.org/10.3390/nu5051544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–61. https://doi.org/10.1016/j.metabol.2016.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stefan N, Fritsche A, Schick F, Haring HU. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4(9):789–98. https://doi.org/10.1016/S2213-8587(16)00082-6.

    Article  PubMed  Google Scholar 

  7. Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinology. 2014;2(11):901–10. https://doi.org/10.1016/S2213-8587(14)70032-4.

    Article  CAS  PubMed  Google Scholar 

  8. Gastaldelli A, Kozakova M, Hojlund K, Flyvbjerg A, Favuzzi A, Mitrakou A, Balkau B, RISC Investigators. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology. 2009;49(5):1537–44. https://doi.org/10.1002/hep.22845.

    Article  CAS  PubMed  Google Scholar 

  9. Lallukka S, Yki-Jarvinen H. Non-alcoholic fatty liver disease and risk of type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2016;30(3):385–95. https://doi.org/10.1016/j.beem.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  10. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and Lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7(11):9453–74. https://doi.org/10.3390/nu7115475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brouwers B, Schrauwen-Hinderling VB, Jelenik T, Gemmink A, Havekes B, Bruls Y, Dahlmans D, Roden M, Hesselink MKC, Schrauwen P. Metabolic disturbances of non-alcoholic fatty liver resemble the alterations typical for type 2 diabetes. Clin Sci (Lond). 2017;131(15):1905–17. https://doi.org/10.1042/CS20170261.

    Article  CAS  Google Scholar 

  12. Gastaldelli A, Gaggini M, DeFronzo R. Glucose kinetics: an update and novel insights into its regulation by glucagon and GLP-1. Curr Opin Clin Nutr Metab Care. 2017;20(4):300–9. https://doi.org/10.1097/MCO.0000000000000384.

    Article  CAS  PubMed  Google Scholar 

  13. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38. https://doi.org/10.1172/JCI34275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71. https://doi.org/10.1016/j.cell.2012.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23. https://doi.org/10.1152/ajpendo.1979.237.3.E214.

    Article  CAS  PubMed  Google Scholar 

  16. Rosso C, Mezzabotta L, Gaggini M, Salomone F, Gambino R, Marengo A, Saba F, Vanni E, Younes R, Saponaro C, Buzzigoli E, Caviglia GP, Abate ML, Smedile A, Rizzetto M, Cassader M, Gastaldelli A, Bugianesi E. Peripheral insulin resistance predicts liver damage in nondiabetic subjects with nonalcoholic fatty liver disease. Hepatology. 2016;63(1):107–16. https://doi.org/10.1002/hep.28287.

    Article  CAS  PubMed  Google Scholar 

  17. Isokuortti E, Zhou Y, Peltonen M, Bugianesi E, Clement K, Bonnefont-Rousselot D, Lacorte JM, Gastaldelli A, Schuppan D, Schattenberg JM, Hakkarainen A, Lundbom N, Jousilahti P, Mannisto S, Keinanen-Kiukaanniemi S, Saltevo J, Anstee QM, Yki-Jarvinen H. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study. Diabetologia. 2017;60:1873. https://doi.org/10.1007/s00125-017-4340-1.

    Article  PubMed  Google Scholar 

  18. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.

    Article  CAS  Google Scholar 

  19. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24(3):539–48.

    Article  CAS  Google Scholar 

  20. Svegliati-Baroni G, Bugianesi E, Bouserhal T, Marini F, Ridolfi F, Tarsetti F, Ancarani F, Petrelli E, Peruzzi E, Lo Cascio M, Rizzetto M, Marchesini G, Benedetti A. Post-load insulin resistance is an independent predictor of hepatic fibrosis in virus C chronic hepatitis and in non-alcoholic fatty liver disease. Gut. 2007;56(9):1296–301. https://doi.org/10.1136/gut.2006.107946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gastaldelli A. Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;93(Suppl 1):S60–5. https://doi.org/10.1016/S0168-8227(11)70015-8.

    Article  CAS  PubMed  Google Scholar 

  22. Mari A, Pacini G, Brazzale AR, Ahren B. Comparative evaluation of simple insulin sensitivity methods based on the oral glucose tolerance test. Diabetologia. 2005;48(4):748–51.

    Article  CAS  Google Scholar 

  23. Cherrington AD. Banting lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999;48(5):1198–214.

    Article  CAS  Google Scholar 

  24. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo RA. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989;84(1):205–13. https://doi.org/10.1172/JCI114142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, Buzzigoli E, Sironi AM, Cersosimo E, Ferrannini E, Defronzo RA. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506.

    Article  CAS  Google Scholar 

  26. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30(1):89–94. https://doi.org/10.2337/dc06-1519.

    Article  CAS  PubMed  Google Scholar 

  27. Vangipurapu J, Stancakova A, Pihlajamaki J, Kuulasmaa TM, Kuulasmaa T, Paananen J, Kuusisto J, Ferrannini E, Laakso M. Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia. 2011;54(3):563–71. https://doi.org/10.1007/s00125-010-1977-4.

    Article  CAS  PubMed  Google Scholar 

  28. Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes. 2017;66(4):815–22. https://doi.org/10.2337/db16-1167.

    Article  CAS  PubMed  Google Scholar 

  29. Sondergaard E, Jensen MD. Quantification of adipose tissue insulin sensitivity. J Investig Med. 2016;64(5):989–91. https://doi.org/10.1136/jim-2016-000098.

    Article  PubMed  Google Scholar 

  30. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998;19(5):608–24. https://doi.org/10.1210/edrv.19.5.0349.

    Article  CAS  PubMed  Google Scholar 

  31. Byrne MM, Sturis J, Polonsky KS. Insulin secretion and clearance during low-dose graded glucose infusion. Am J Physiol. 1995;268(1 Pt 1):E21–7.

    CAS  PubMed  Google Scholar 

  32. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA, San Antonio Metabolism Study. Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia. 2004;47(1):31–9. https://doi.org/10.1007/s00125-003-1263-9.

    Article  CAS  PubMed  Google Scholar 

  33. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95. https://doi.org/10.2337/db09-9028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bril F, Lomonaco R, Orsak B, Ortiz-Lopez C, Webb A, Tio F, Hecht J, Cusi K. Relationship between disease severity, hyperinsulinemia, and impaired insulin clearance in patients with nonalcoholic steatohepatitis. Hepatology. 2014;59(6):2178–87. https://doi.org/10.1002/hep.26988.

    Article  CAS  PubMed  Google Scholar 

  35. Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Jarvinen H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122–30. https://doi.org/10.1053/j.gastro.2008.03.021.

    Article  CAS  PubMed  Google Scholar 

  36. Campbell JE, Drucker DJ. Islet alpha cells and glucagon—critical regulators of energy homeostasis. Nat Rev Endocrinol. 2015;11(6):329–38. https://doi.org/10.1038/nrendo.2015.51.

    Article  CAS  PubMed  Google Scholar 

  37. Wewer Albrechtsen NJ, Kuhre RE, Pedersen J, Knop FK, Holst JJ. The biology of glucagon and the consequences of hyperglucagonemia. Biomark Med. 2016;10(11):1141–51. https://doi.org/10.2217/bmm-2016-0090.

    Article  CAS  PubMed  Google Scholar 

  38. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes. 2000;49(8):1367–73.

    Article  CAS  Google Scholar 

  39. Magnusson I, Rothman DL, Gerard DP, Katz LD, Shulman GI. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes. 1995;44(2):185–9.

    Article  CAS  Google Scholar 

  40. Roden M, Perseghin G, Petersen KF, Hwang JH, Cline GW, Gerow K, Rothman DL, Shulman GI. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest. 1996;97(3):642–8. https://doi.org/10.1172/JCI118460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cherrington AD, Chiasson JL, Liljenquist JE, Jennings AS, Keller U, Lacy WW. The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog. J Clin Invest. 1976;58(6):1407–18. https://doi.org/10.1172/JCI108596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987;64(1):106–10. https://doi.org/10.1210/jcem-64-1-106.

    Article  CAS  PubMed  Google Scholar 

  43. Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000;85(11):4053–9. https://doi.org/10.1210/jcem.85.11.6993.

    Article  CAS  PubMed  Google Scholar 

  44. Junker AE, Gluud L, Holst JJ, Knop FK, Vilsboll T. Diabetic and nondiabetic patients with nonalcoholic fatty liver disease have an impaired incretin effect and fasting hyperglucagonaemia. J Intern Med. 2016;279(5):485–93. https://doi.org/10.1111/joim.12462.

    Article  CAS  PubMed  Google Scholar 

  45. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57. https://doi.org/10.1053/j.gastro.2007.03.054.

    Article  CAS  PubMed  Google Scholar 

  46. Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D'Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia. 2012;55(12):3262–72. https://doi.org/10.1007/s00125-012-2716-9.

    Article  CAS  PubMed  Google Scholar 

  47. Gastaldelli A, Gaggini M, Daniele G, Ciociaro D, Cersosimo E, Tripathy D, Triplitt C, Fox P, Musi N, DeFronzo R, Iozzo P. Exenatide improves both hepatic and adipose tissue insulin resistance: a dynamic positron emission tomography study. Hepatology. 2016;64(6):2028–37. https://doi.org/10.1002/hep.28827.

    Article  CAS  PubMed  Google Scholar 

  48. Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, Anania FA. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology. 2010;51(5):1584–92. https://doi.org/10.1002/hep.23569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prigeon RL, Quddusi S, Paty B, D’Alessio DA. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab. 2003;285(4):E701–7. https://doi.org/10.1152/ajpendo.00024.2003.

    Article  CAS  PubMed  Google Scholar 

  50. Seghieri M, Rebelos E, Gastaldelli A, Astiarraga BD, Casolaro A, Barsotti E, Pocai A, Nauck M, Muscelli E, Ferrannini E. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia. 2013;56(1):156–61. https://doi.org/10.1007/s00125-012-2738-3.

    Article  CAS  PubMed  Google Scholar 

  51. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 2011;31(9):1285–97. https://doi.org/10.1111/j.1478-3231.2011.02462.x.

    Article  CAS  PubMed  Google Scholar 

  52. Liu P, Song J, Liu H, Yan F, He T, Wang L, Shen H, Hou X, Chen L. Insulin regulates glucagon-like peptide-1 secretion by pancreatic alpha cells. Endocrine. 2018;62:394. https://doi.org/10.1007/s12020-018-1684-3.

    Article  CAS  PubMed  Google Scholar 

  53. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, Hazlehurst JM, Guo K, team Lt, Abouda G, Aldersley MA, Stocken D, Gough SC, Tomlinson JW, Brown RM, Hubscher SG, Newsome PN. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90. https://doi.org/10.1016/S0140-6736(15)00803-X.

    Article  CAS  PubMed  Google Scholar 

  54. Armstrong MJ, Hull D, Guo K, Barton D, Hazlehurst JM, Gathercole LL, Nasiri M, Yu J, Gough SC, Newsome PN, Tomlinson JW. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J Hepatol. 2016;64(2):399–408. https://doi.org/10.1016/j.jhep.2015.08.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cersosimo E, Gastaldelli A, Cervera A, Wajcberg E, Sriwijilkamol A, Fernandez M, Zuo P, Petz R, Triplitt C, Musi N, DeFronzo RA. Effect of exenatide on splanchnic and peripheral glucose metabolism in type 2 diabetic subjects. J Clin Endocrinol Metab. 2011;96(6):1763–70. https://doi.org/10.1210/jc.2010-2146.

    Article  CAS  PubMed  Google Scholar 

  56. Matikainen N, Soderlund S, Bjornson E, Pietilainen K, Hakkarainen A, Lundbom N, Taskinen MR, Boren J. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single-Centre randomised controlled study. Diabetes Obes Metab. 2018;21:84. https://doi.org/10.1111/dom.13487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernsmeier C, Meyer-Gerspach AC, Blaser LS, Jeker L, Steinert RE, Heim MH, Beglinger C. Glucose-induced glucagon-like peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease. PLoS One. 2014;9(1):e87488. https://doi.org/10.1371/journal.pone.0087488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. https://doi.org/10.1136/bmj.d7771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bril F, Barb D, Portillo-Sanchez P, Biernacki D, Lomonaco R, Suman A, Weber MH, Budd JT, Lupi ME, Cusi K. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology. 2017;65(4):1132–44. https://doi.org/10.1002/hep.28985.

    Article  CAS  PubMed  Google Scholar 

  60. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, Okunade A, Klein S. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430–5. https://doi.org/10.1073/pnas.0904944106.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bedogni G, Gastaldelli A, Manco M, De Col A, Agosti F, Tiribelli C, Sartorio A. Relationship between fatty liver and glucose metabolism: a cross-sectional study in 571 obese children. Nutr Metab Cardiovasc Dis. 2012;22(2):120–6. https://doi.org/10.1016/j.numecd.2010.05.003.

    Article  CAS  PubMed  Google Scholar 

  62. Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, Bugianesi E, Gastaldelli A. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67(1):145–58. https://doi.org/10.1002/hep.29465.

    Article  CAS  PubMed  Google Scholar 

  63. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–36. https://doi.org/10.1038/nrendo.2014.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. https://doi.org/10.1016/j.cmet.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, Milburn M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404–13. https://doi.org/10.1016/j.metabol.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  66. Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, Lehman-McKeeman LD, Vaillancourt RR, Cherrington NJ. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47(3):603–15. https://doi.org/10.1007/s00726-014-1894-9.

    Article  CAS  PubMed  Google Scholar 

  67. Sunny NE, Kalavalapalli S, Bril F, Garrett TJ, Nautiyal M, Mathew JT, Williams CM, Cusi K. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab. 2015;309(4):E311–9. https://doi.org/10.1152/ajpendo.00161.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koo BK, Kim D, Joo SK, Kim JH, Chang MS, Kim BG, Lee KL, Kim W. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J Hepatol. 2017;66(1):123–31. https://doi.org/10.1016/j.jhep.2016.08.019.

    Article  PubMed  Google Scholar 

  69. Lee MJ, Kim EH, Bae SJ, Kim GA, Park SW, Choe J, Jung CH, Lee WJ, Kim HK, Crohn’s, Colitis Association in D-G. Age-related decrease in skeletal muscle mass is an independent risk factor for incident NAFLD: a 10-year retrospective cohort study. Gut Liver. 2018;13:67. https://doi.org/10.5009/gnl18070.

    Article  PubMed Central  Google Scholar 

  70. Petta S, Ciminnisi S, Di Marco V, Cabibi D, Camma C, Licata A, Marchesini G, Craxi A. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2017;45(4):510–8. https://doi.org/10.1111/apt.13889.

    Article  CAS  PubMed  Google Scholar 

  71. Ortiz-Lopez C, Lomonaco R, Orsak B, Finch J, Chang Z, Kochunov VG, Hardies J, Cusi K. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35(4):873–8. https://doi.org/10.2337/dc11-1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996;98(2):378–85. https://doi.org/10.1172/JCI118803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roden M, Stingl H, Chandramouli V, Schumann WC, Hofer A, Landau BR, Nowotny P, Waldhausl W, Shulman GI. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes. 2000;49(5):701–7.

    Article  CAS  Google Scholar 

  74. Natali A, Toschi E, Camastra S, Gastaldelli A, Groop L, Ferrannini E. Determinants of postabsorptive endogenous glucose output in non-diabetic subjects. European Group for the Study of Insulin Resistance (EGIR). Diabetologia. 2000;43(10):1266–72.

    Article  CAS  Google Scholar 

  75. Hyotylainen T, Jerby L, Petaja EM, Mattila I, Jantti S, Auvinen P, Gastaldelli A, Yki-Jarvinen H, Ruppin E, Oresic M. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat Commun. 2016;7:8994. https://doi.org/10.1038/ncomms9994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gastaldelli A, Miyazaki Y, Pettiti M, Buzzigoli E, Mahankali S, Ferrannini E, DeFronzo RA. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J Clin Endocrinol Metab. 2004;89(8):3914–21. https://doi.org/10.1210/jc.2003-031941.

    Article  CAS  PubMed  Google Scholar 

  77. Gastaldelli A, Toschi E, Pettiti M, Frascerra S, Quinones-Galvan A, Sironi AM, Natali A, Ferrannini E. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes. 2001;50(8):1807–12. https://doi.org/10.2337/diabetes.50.8.1807.

    Article  CAS  PubMed  Google Scholar 

  78. Jacome-Sosa MM, Parks EJ. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol. 2014;25(3):213–20. https://doi.org/10.1097/MOL.0000000000000080.

    Article  CAS  PubMed  Google Scholar 

  79. Luukkonen PK, Sadevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, Lallukka S, Pelloux V, Gaggini M, Jian C, Hakkarainen A, Lundbom N, Gylling H, Salonen A, Oresic M, Hyotylainen T, Orho-Melander M, Rissanen A, Gastaldelli A, Clement K, Hodson L, Yki-Jarvinen H. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://doi.org/10.2337/dc18-0071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51. https://doi.org/10.1172/JCI23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726–35. https://doi.org/10.1053/j.gastro.2013.11.049. S0016-5085(13)01730-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  82. Mancina RM, Matikainen N, Maglio C, Soderlund S, Lundbom N, Hakkarainen A, Rametta R, Mozzi E, Fargion S, Valenti L, Romeo S, Taskinen MR, Boren J. Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant. J Clin Endocrinol Metab. 2015;100(5):E821–5. https://doi.org/10.1210/jc.2014-4464.

    Article  CAS  PubMed  Google Scholar 

  83. Bell LN, Wang J, Muralidharan S, Chalasani S, Fullenkamp AM, Wilson LA, Sanyal AJ, Kowdley KV, Neuschwander-Tetri BA, Brunt EM, McCullough AJ, Bass NM, Diehl AM, Unalp-Arida A, Chalasani N, Nonalcoholic Steatohepatitis Clinical Research Network. Relationship between adipose tissue insulin resistance and liver histology in nonalcoholic steatohepatitis: a pioglitazone versus vitamin E versus placebo for the treatment of nondiabetic patients with nonalcoholic steatohepatitis trial follow-up study. Hepatology. 2012;56(4):1311–8. https://doi.org/10.1002/hep.25805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gastaldelli A, Harrison SA, Belfort-Aguilar R, Hardies LJ, Balas B, Schenker S, Cusi K. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology. 2009;50(4):1087–93. https://doi.org/10.1002/hep.23116.

    Article  CAS  PubMed  Google Scholar 

  85. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, Finch J, Gastaldelli A, Harrison S, Tio F, Cusi K. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology. 2012;55(5):1389–97. https://doi.org/10.1002/hep.25539.

    Article  CAS  PubMed  Google Scholar 

  86. Gaggini M, Carli F, Gastaldelli A. The color of fat and its central role in the development and progression of metabolic diseases. Horm Mol Biol Clin Investig. 2017;31(1). https://doi.org/10.1515/hmbci-2017-0060.

  87. Guo ZK, Cella LK, Baum C, Ravussin E, Schoeller DA. De novo lipogenesis in adipose tissue of lean and obese women: application of deuterated water and isotope ratio mass spectrometry. Int J Obes Relat Metab Disord. 2000;24(7):932–7.

    Article  CAS  Google Scholar 

  88. Fabbrini E, Yoshino J, Yoshino M, Magkos F, Tiemann Luecking C, Samovski D, Fraterrigo G, Okunade AL, Patterson BW, Klein S. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest. 2015;125(2):787–95. https://doi.org/10.1172/JCI78425.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stefan N, Schick F, Haring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26(2):292–300. https://doi.org/10.1016/j.cmet.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  90. Gastaldelli A, Ferrannini E. Chapter 3: pathophysiology of prediabetes: role of lipotoxicity? In: Bergman M, editor. Global health perspectives in prediabetes and diabetes prevention, vol. 1. New Jersey: World Scientific; 2014. p. 31–48. https://doi.org/10.1142/9789814603324_0003.

    Chapter  Google Scholar 

  91. Luukkonen PK, Zhou Y, Sadevirta S, Leivonen M, Arola J, Oresic M, Hyotylainen T, Yki-Jarvinen H. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol. 2016;64(5):1167–75. https://doi.org/10.1016/j.jhep.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  92. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ, Sanyal AJ. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. https://doi.org/10.1002/hep.21763.

    Article  CAS  PubMed  Google Scholar 

  93. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, Jelenik T, Muller J, Herder C, Nowotny P, Shulman GI, Roden M. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A. 2014;111(26):9597–602. https://doi.org/10.1073/pnas.1409229111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Zhang D, Samuel VT, Vatner DF, Petersen KF, Shulman GI, Serlie MJ. Hepatic diacylglycerol-associated protein kinase Cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 2017;19(10):1997–2004. https://doi.org/10.1016/j.celrep.2017.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Apostolopoulou M, Gordillo R, Koliaki C, Gancheva S, Jelenik T, De Filippo E, Herder C, Markgraf D, Jankowiak F, Esposito I, Schlensak M, Scherer PE, Roden M. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care. 2018;41(6):1235–43. https://doi.org/10.2337/dc17-1318.

    Article  CAS  PubMed  Google Scholar 

  96. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003;100(6):3077–82. https://doi.org/10.1073/pnas.0630588100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anstee QM, Day CP. The genetics of NAFLD. Nat Rev Gastroenterol Hepatol. 2013;10(11):645–55. https://doi.org/10.1038/nrgastro.2013.182.

    Article  CAS  PubMed  Google Scholar 

  98. Petaja EM, Yki-Jarvinen H. Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD—A systematic review. Int J Mol Sci. 2016;17(5). https://doi.org/10.3390/ijms17050633.

  99. Sookoian S, Pirola CJ. Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2017;23(1):1–12. https://doi.org/10.3350/cmh.2016.0109.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sevastianova K, Kotronen A, Gastaldelli A, Perttila J, Hakkarainen A, Lundbom J, Suojanen L, Orho-Melander M, Lundbom N, Ferrannini E, Rissanen A, Olkkonen VM, Yki-Jarvinen H. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94(1):104–11. https://doi.org/10.3945/ajcn.111.012369.

    Article  CAS  PubMed  Google Scholar 

  101. Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65(2):399–412. https://doi.org/10.1016/j.jhep.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  102. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E, Motta BM, Kaminska D, Rametta R, Grimaudo S, Pelusi S, Montalcini T, Alisi A, Maggioni M, Karja V, Boren J, Kakela P, Di Marco V, Xing C, Nobili V, Dallapiccola B, Craxi A, Pihlajamaki J, Fargion S, Sjostrom L, Carlsson LM, Romeo S, Valenti L. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2015;61(2):506–14. https://doi.org/10.1002/hep.27490.

    Article  CAS  PubMed  Google Scholar 

  103. Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, Gaulton KJ, Eicher JD, Sharp SJ, Luan J, De Lucia RE, Stewart ID, Wheeler E, Willems SM, Adams C, Yaghootkar H, Consortium EP-I, Cambridge FC, Forouhi NG, Khaw KT, Johnson AD, Semple RK, Frayling T, Perry JR, Dermitzakis E, McCarthy MI, Barroso I, Wareham NJ, Savage DB, Langenberg C, O'Rahilly S, Scott RA. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49(1):17–26. https://doi.org/10.1038/ng.3714.

    Article  CAS  PubMed  Google Scholar 

  104. Yaghootkar H, Scott RA, White CC, Zhang W, Speliotes E, Munroe PB, Ehret GB, Bis JC, Fox CS, Walker M, Borecki IB, Knowles JW, Yerges-Armstrong L, Ohlsson C, Perry JR, Chambers JC, Kooner JS, Franceschini N, Langenberg C, Hivert MF, Dastani Z, Richards JB, Semple RK, Frayling TM. Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes. 2014;63(12):4369–77. https://doi.org/10.2337/db14-0318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81. https://doi.org/10.1016/j.molmed.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  106. Yki-Jarvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis. 2010;28(1):203–9. https://doi.org/10.1159/000282087.

    Article  CAS  PubMed  Google Scholar 

  107. Gastaldelli A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clin Sci. 2017;131(22):2701–4. https://doi.org/10.1042/CS20170987.

    Article  CAS  PubMed  Google Scholar 

  108. Knudsen SH, Hansen LS, Pedersen M, Dejgaard T, Hansen J, Hall GV, Thomsen C, Solomon TP, Pedersen BK, Krogh-Madsen R. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J Appl Physiol (1985). 2012;113(1):7–15. https://doi.org/10.1152/japplphysiol.00189.2011.

    Article  CAS  Google Scholar 

  109. Peterson CM, Zhang B, Johannsen DL, Ravussin E. Eight weeks of overfeeding alters substrate partitioning without affecting metabolic flexibility in men. Int J Obes. 2017;41(6):887–93. https://doi.org/10.1038/ijo.2017.58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gastaldelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gastaldelli, A. (2020). NAFLD and Insulin Resistance: A Multisystemic Disease. In: Bugianesi, E. (eds) Non-Alcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95828-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95828-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95827-9

  • Online ISBN: 978-3-319-95828-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics