Skip to main content

Liver Transplantation and NAFLD/NASH

  • Chapter
  • First Online:
Non-Alcoholic Fatty Liver Disease

Abstract

Due to the global epidemic of overweight and obesity, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have become increasingly common indications for liver transplantation (LT), both for end-stage liver disease and for hepatocellular carcinoma. NASH patients who are candidates to LT present peculiar issues as they are frequently overweight and have features of metabolic syndrome with associated comorbidities. Thus, pre-LT assessment and selection, as well as management of overweight and comorbidities, are of paramount importance to achieve good post-LT outcomes. However, despite increased postoperative morbidity and higher mortality due to cardiovascular events, long-term survival after LT in NASH patients is comparable to that for other indications. NAFLD and NASH frequently recur after LT, but this is rarely associated with progression toward cirrhosis and end-stage liver disease.

On the other hand, obesity and NAFLD in the general population have also implications for organ procurement as donor liver steatosis is associated with a higher rate of post-LT graft dysfunction and biliary complications. Whereas severely steatotic grafts are generally discarded, the classical approach to cope with mild and moderate graft steatosis has been to minimize other risk factors by limiting ischemia time and allocating these grafts to low-risk recipients. Nowadays, a lot of work is being done to reduce ischemia-reperfusion injury and to assess graft function before LT by means of various machine perfusion techniques. Whether machine perfusion will allow safer utilization of fatty liver grafts has yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Younossi Z, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. https://doi.org/10.1038/nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  2. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. https://doi.org/10.1002/hep.28431.

    Article  PubMed  Google Scholar 

  3. Charlton MR, et al. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–53. https://doi.org/10.1053/j.gastro.2011.06.061.

    Article  PubMed  Google Scholar 

  4. Wong RJ, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55. https://doi.org/10.1053/j.gastro.2014.11.039.

    Article  PubMed  Google Scholar 

  5. Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology. 2014;59:2188–95. https://doi.org/10.1002/hep.26986.

    Article  PubMed  Google Scholar 

  6. Pais R, et al. NAFLD and liver transplantation: current burden and expected challenges. J Hepatol. 2016;65:1245–57. https://doi.org/10.1016/j.jhep.2016.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patel YA, Berg CL, Moylan CA. Nonalcoholic fatty liver disease: key considerations before and after liver transplantation. Dig Dis Sci. 2016;61:1406–16. https://doi.org/10.1007/s10620-016-4035-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hakeem AR, et al. Increased morbidity in overweight and obese liver transplant recipients: a single-center experience of 1325 patients from the United Kingdom. Liver Transpl. 2013;19:551–62. https://doi.org/10.1002/lt.23618.

    Article  PubMed  Google Scholar 

  9. LaMattina JC, et al. Complications associated with liver transplantation in the obese recipient. Clin Transpl. 2012;26:910–8. https://doi.org/10.1111/j.1399-0012.2012.01669.x.

    Article  Google Scholar 

  10. Nair S, Verma S, Thuluvath PJ. Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States. Hepatology. 2002;35:105–9. https://doi.org/10.1053/jhep.2002.30318.

    Article  PubMed  Google Scholar 

  11. Segev DL, et al. Prolonged waiting times for liver transplantation in obese patients. Ann Surg. 2008;248:863–70. https://doi.org/10.1097/SLA.0b013e31818a01ef.

    Article  PubMed  Google Scholar 

  12. Stine JG, et al. Increased risk of portal vein thrombosis in patients with cirrhosis due to nonalcoholic steatohepatitis. Liver Transpl. 2015;21:1016–21. https://doi.org/10.1002/lt.24134.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dyson J, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60:110–7. https://doi.org/10.1016/j.jhep.2013.08.011.

    Article  PubMed  Google Scholar 

  14. Mittal S, et al. Hepatocellular carcinoma in the absence of cirrhosis in united states veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016;14:124–131.e121. https://doi.org/10.1016/j.cgh.2015.07.019.

    Article  CAS  PubMed  Google Scholar 

  15. Piscaglia F, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology. 2016;63:827–38. https://doi.org/10.1002/hep.28368.

    Article  PubMed  Google Scholar 

  16. Paradis V, et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology. 2009;49:851–9. https://doi.org/10.1002/hep.22734.

    Article  PubMed  Google Scholar 

  17. Younes R, Bugianesi E. Should we undertake surveillance for HCC in patients with NAFLD? J Hepatol. 2018;68:326–34. https://doi.org/10.1016/j.jhep.2017.10.006.

    Article  PubMed  Google Scholar 

  18. Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 2016;67:103–17. https://doi.org/10.1146/annurev-med-090514-013832.

    Article  CAS  PubMed  Google Scholar 

  19. Halegoua-De Marzio DL, Wong SY, Fenkel JM, Doria C, Sass DA. Listing practices for morbidly obese patients at liver transplantation centers in the United States. Exp Clin Transplant. 2016;14:646–9. https://doi.org/10.6002/ect.2015.0247.

    Article  PubMed  Google Scholar 

  20. Promrat K, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–9. https://doi.org/10.1002/hep.23276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sacks FM, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–73. https://doi.org/10.1056/NEJMoa0804748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Englesbe MJ, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8. https://doi.org/10.1016/j.jamcollsurg.2010.03.039.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krell RW, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19:1396–402. https://doi.org/10.1002/lt.23752.

    Article  PubMed  Google Scholar 

  24. Kaido T, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13:1549–56. https://doi.org/10.1111/ajt.12221.

    Article  CAS  PubMed  Google Scholar 

  25. Masuda T, et al. Sarcopenia is a prognostic factor in living donor liver transplantation. Liver Transpl. 2014;20:401–7. https://doi.org/10.1002/lt.23811.

    Article  PubMed  Google Scholar 

  26. Carias S, et al. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol. 2016;31:628–33. https://doi.org/10.1111/jgh.13166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takata MC, et al. Laparoscopic bariatric surgery improves candidacy in morbidly obese patients awaiting transplantation. Surg Obes Relat Dis. 2008;4:159–64; discussion 164–155. https://doi.org/10.1016/j.soard.2007.12.009.

    Article  PubMed  Google Scholar 

  28. Lin MY, et al. Laparoscopic sleeve gastrectomy is safe and efficacious for pretransplant candidates. Surg Obes Relat Dis. 2013;9:653–8. https://doi.org/10.1016/j.soard.2013.02.013.

    Article  PubMed  Google Scholar 

  29. Heimbach JK, et al. Combined liver transplantation and gastric sleeve resection for patients with medically complicated obesity and end-stage liver disease. Am J Transplant. 2013;13:363–8. https://doi.org/10.1111/j.1600-6143.2012.04318.x.

    Article  CAS  PubMed  Google Scholar 

  30. Campsen J, et al. Adjustable gastric banding in a morbidly obese patient during liver transplantation. Obes Surg. 2008;18:1625–7. https://doi.org/10.1007/s11695-008-9633-5.

    Article  PubMed  Google Scholar 

  31. Mikolasevic I, et al. Nonalcoholic fatty liver disease and liver transplantation—where do we stand? World J Gastroenterol. 2018;24:1491–506. https://doi.org/10.3748/wjg.v24.i14.1491.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patel S, et al. Comparison of the frequency of coronary artery disease in alcohol-related versus non-alcohol-related endstage liver disease. Am J Cardiol. 2011;108:1552–5. https://doi.org/10.1016/j.amjcard.2011.07.013.

    Article  PubMed  Google Scholar 

  33. Vanwagner LB, et al. Patients transplanted for nonalcoholic steatohepatitis are at increased risk for postoperative cardiovascular events. Hepatology. 2012;56:1741–50. https://doi.org/10.1002/hep.25855.

    Article  PubMed  Google Scholar 

  34. Wray C, et al. Liver transplantation outcome in patients with angiographically proven coronary artery disease: a multi-institutional study. Am J Transplant. 2013;13:184–91. https://doi.org/10.1111/j.1600-6143.2012.04293.x.

    Article  CAS  PubMed  Google Scholar 

  35. Aldenkortt F, et al. Portopulmonary hypertension and hepatopulmonary syndrome. World J Gastroenterol. 2014;20:8072–81. https://doi.org/10.3748/wjg.v20.i25.8072.

    Article  PubMed  PubMed Central  Google Scholar 

  36. European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J Hepatol. 2016;64:433–85. https://doi.org/10.1016/j.jhep.2015.10.006.

    Article  Google Scholar 

  37. Park CW, Tsai NT, Wong LL. Implications of worse renal dysfunction and medical comorbidities in patients with NASH undergoing liver transplant evaluation: impact on MELD and more. Clin Transplant. 2011;25:E606–11. https://doi.org/10.1111/j.1399-0012.2011.01497.x.

    Article  PubMed  Google Scholar 

  38. Singal AK, Salameh H, Kuo YF, Wiesner RH. Evolving frequency and outcomes of simultaneous liver kidney transplants based on liver disease etiology. Transplantation. 2014;98:216–21. https://doi.org/10.1097/TP.0000000000000048.

    Article  CAS  PubMed  Google Scholar 

  39. Eason JD, et al. Proceedings of consensus conference on simultaneous liver kidney transplantation (SLK). Am J Transplant. 2008;8:2243–51. https://doi.org/10.1111/j.1600-6143.2008.02416.x.

    Article  CAS  PubMed  Google Scholar 

  40. Yoo HY, Thuluvath PJ. The effect of insulin-dependent diabetes mellitus on outcome of liver transplantation. Transplantation. 2002;74:1007–12. https://doi.org/10.1097/01.TP.0000032436.89407.31.

    Article  CAS  PubMed  Google Scholar 

  41. Sidney Barritt A, Dellon ES, Kozlowski T, Gerber DA, Hayashi PH. The influence of nonalcoholic fatty liver disease and its associated comorbidities on liver transplant outcomes. J Clin Gastroenterol. 2011;45:372–8. https://doi.org/10.1097/MCG.0b013e3181eeaff0.

    Article  PubMed  Google Scholar 

  42. Bhagat V, et al. Outcomes of liver transplantation in patients with cirrhosis due to nonalcoholic steatohepatitis versus patients with cirrhosis due to alcoholic liver disease. Liver Transpl. 2009;15:1814–20. https://doi.org/10.1002/lt.21927.

    Article  PubMed  Google Scholar 

  43. Malik SM, de Vera ME, Fontes P, Shaikh O, Ahmad J. Outcome after liver transplantation for NASH cirrhosis. Am J Transplant. 2009;9:782–93. https://doi.org/10.1111/j.1600-6143.2009.02590.x.

    Article  CAS  PubMed  Google Scholar 

  44. Agopian VG, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann Surg. 2012;256:624–33. https://doi.org/10.1097/SLA.0b013e31826b4b7e.

    Article  PubMed  Google Scholar 

  45. Wang X, et al. Outcomes of liver transplantation for nonalcoholic steatohepatitis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2014;12:394–402.e391. https://doi.org/10.1016/j.cgh.2013.09.023.

    Article  PubMed  Google Scholar 

  46. Houlihan DD, et al. Renal function in patients undergoing transplantation for nonalcoholic steatohepatitis cirrhosis: time to reconsider immunosuppression regimens? Liver Transpl. 2011;17:1292–8. https://doi.org/10.1002/lt.22382.

    Article  PubMed  Google Scholar 

  47. Kennedy C, et al. Equivalent survival following liver transplantation in patients with non-alcoholic steatohepatitis compared with patients with other liver diseases. HPB (Oxford). 2012;14:625–34. https://doi.org/10.1111/j.1477-2574.2012.00497.x.

    Article  Google Scholar 

  48. Reddy SK, et al. Outcomes of curative treatment for hepatocellular cancer in nonalcoholic steatohepatitis versus hepatitis C and alcoholic liver disease. Hepatology. 2012;55:1809–19. https://doi.org/10.1002/hep.25536.

    Article  PubMed  Google Scholar 

  49. Afzali A, Berry K, Ioannou GN. Excellent posttransplant survival for patients with nonalcoholic steatohepatitis in the United States. Liver Transpl. 2012;18:29–37. https://doi.org/10.1002/lt.22435.

    Article  PubMed  Google Scholar 

  50. Thuluvath PJ, Hanish S, Savva Y. Liver transplantation in cryptogenic cirrhosis: outcome comparisons between NASH, alcoholic, and AIH cirrhosis. Transplantation. 2018;102:656–63. https://doi.org/10.1097/TP.0000000000002030.

    Article  PubMed  Google Scholar 

  51. Belli LS, et al. Impact of DAAs on liver transplantation: major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J Hepatol. 2018;69:810. https://doi.org/10.1016/j.jhep.2018.06.010.

    Article  CAS  PubMed  Google Scholar 

  52. Zezos P, Renner EL. Liver transplantation and non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15532–8. https://doi.org/10.3748/wjg.v20.i42.15532.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mikolasevic I, Orlic L, Hrstic I, Milic S. Metabolic syndrome and non-alcoholic fatty liver disease after liver or kidney transplantation. Hepatol Res. 2016;46:841–52. https://doi.org/10.1111/hepr.12642.

    Article  CAS  PubMed  Google Scholar 

  54. Sourianarayanane A, Arikapudi S, McCullough AJ, Humar A. Nonalcoholic steatohepatitis recurrence and rate of fibrosis progression following liver transplantation. Eur J Gastroenterol Hepatol. 2017;29:481–7. https://doi.org/10.1097/MEG.0000000000000820.

    Article  PubMed  Google Scholar 

  55. Bhati C, et al. Long-term outcomes in patients undergoing liver transplantation for nonalcoholic Steatohepatitis-related cirrhosis. Transplantation. 2017;101:1867–74. https://doi.org/10.1097/TP.0000000000001709.

    Article  PubMed  Google Scholar 

  56. Seo S, et al. De novo nonalcoholic fatty liver disease after liver transplantation. Liver Transpl. 2007;13:844–7. https://doi.org/10.1002/lt.20932.

    Article  PubMed  Google Scholar 

  57. Losurdo G, et al. Systematic review with meta-analysis: de novo non-alcoholic fatty liver disease in liver-transplanted patients. Aliment Pharmacol Ther. 2018;47:704–14. https://doi.org/10.1111/apt.14521.

    Article  CAS  PubMed  Google Scholar 

  58. Narayanan P, et al. Recurrent or de novo allograft Steatosis and long-term outcomes after liver transplantation. Transplantation. 2019;103(1):e14–21. https://doi.org/10.1097/TP.0000000000002317.

    Article  PubMed  Google Scholar 

  59. Vallin M, et al. Recurrent or de novo nonalcoholic fatty liver disease after liver transplantation: natural history based on liver biopsy analysis. Liver Transpl. 2014;20:1064–71. https://doi.org/10.1002/lt.23936.

    Article  PubMed  Google Scholar 

  60. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;49:791–801. https://doi.org/10.1002/hep.22726.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schwimmer JB, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136:1585–92. https://doi.org/10.1053/j.gastro.2009.01.050.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Romeo S, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5. https://doi.org/10.1038/ng.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zelber-Sagi S, et al. Non-high-density lipoprotein cholesterol independently predicts new onset of non-alcoholic fatty liver disease. Liver Int. 2014;34:e128–35. https://doi.org/10.1111/liv.12318.

    Article  CAS  PubMed  Google Scholar 

  64. Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des. 2013;19:5219–38.

    Article  CAS  Google Scholar 

  65. Lazzati A, et al. Bariatric surgery and liver transplantation: a systematic review a new frontier for bariatric surgery. Obes Surg. 2015;25:134–42. https://doi.org/10.1007/s11695-014-1430-8.

    Article  PubMed  Google Scholar 

  66. Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology. 2003;125:1246–57.

    Article  CAS  Google Scholar 

  67. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology. 2000;32:1280–8. https://doi.org/10.1053/jhep.2000.20528.

    Article  CAS  PubMed  Google Scholar 

  68. Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003;304:463–70.

    Article  CAS  Google Scholar 

  69. Shirabe K, et al. Inhibition of thromboxane A2 activity during warm ischemia of the liver. J Surg Res. 1996;61:103–7. https://doi.org/10.1006/jsre.1996.0088.

    Article  CAS  PubMed  Google Scholar 

  70. Laurens M, et al. Warm ischemia-reperfusion injury is decreased by tacrolimus in steatotic rat liver. Liver Transpl. 2006;12:217–25. https://doi.org/10.1002/lt.20585.

    Article  PubMed  Google Scholar 

  71. Seifalian AM, Chidambaram V, Rolles K, Davidson BR. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl Surg. 1998;4:71–7.

    Article  CAS  Google Scholar 

  72. Olthoff KM, et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16:943–9. https://doi.org/10.1002/lt.22091.

    Article  PubMed  Google Scholar 

  73. McCormack L, Dutkowski P, El-Badry AM, Clavien PA. Liver transplantation using fatty livers: always feasible? J Hepatol. 2011;54:1055–62. https://doi.org/10.1016/j.jhep.2010.11.004.

    Article  PubMed  Google Scholar 

  74. Zamboni F, et al. Effect of macrovescicular steatosis and other donor and recipient characteristics on the outcome of liver transplantation. Clin Transpl. 2001;15:53–7.

    Article  CAS  Google Scholar 

  75. Angelico M, et al. A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the liver match study. Dig Liver Dis. 2014;46:340–7. https://doi.org/10.1016/j.dld.2013.11.004.

    Article  PubMed  Google Scholar 

  76. Dutkowski P, et al. The use of fatty liver grafts in modern allocation systems: risk assessment by the balance of risk (BAR) score. Ann Surg. 2012;256:861–8; discussion 868–869. https://doi.org/10.1097/SLA.0b013e318272dea2.

    Article  PubMed  Google Scholar 

  77. Rana A, et al. Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient survival following liver transplantation. Am J Transplant. 2008;8:2537–46. https://doi.org/10.1111/j.1600-6143.2008.02400.x.

    Article  CAS  PubMed  Google Scholar 

  78. Spitzer AL, et al. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl. 2010;16:874–84. https://doi.org/10.1002/lt.22085.

    Article  PubMed  Google Scholar 

  79. Baccarani U, et al. Steatosis of the graft is a risk factor for posttransplantation biliary complications. Transplant Proc. 2009;41:1313–5. https://doi.org/10.1016/j.transproceed.2009.03.084.

    Article  CAS  PubMed  Google Scholar 

  80. Han S, et al. Microsteatosis may not interact with macrosteatosis in living donor liver transplantation. J Hepatol. 2015;62:556–62. https://doi.org/10.1016/j.jhep.2014.10.027.

    Article  PubMed  Google Scholar 

  81. Salizzoni M, et al. Marginal grafts: finding the correct treatment for fatty livers. Transpl Int. 2003;16:486–93. https://doi.org/10.1007/s00147-003-0572-8.

    Article  PubMed  Google Scholar 

  82. Wong TC, et al. Excellent outcomes of liver transplantation using severely steatotic grafts from brain-dead donors. Liver Transpl. 2016;22:226–36. https://doi.org/10.1002/lt.24335.

    Article  PubMed  Google Scholar 

  83. Tandoi F, Salizzoni M, Brunati A, Lupo F, Romagnoli R. Excellent outcomes of liver transplantation using severely steatotic grafts from brain-dead donors. Liver Transpl. 2016;22:377–8. https://doi.org/10.1002/lt.24362.

    Article  PubMed  Google Scholar 

  84. Bejaoui M, et al. Emerging concepts in liver graft preservation. World J Gastroenterol. 2015;21:396–407. https://doi.org/10.3748/wjg.v21.i2.396.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gilbo N, Catalano G, Salizzoni M, Romagnoli R. Liver graft preconditioning, preservation and reconditioning. Dig Liver Dis. 2016;48:1265–74. https://doi.org/10.1016/j.dld.2016.06.031.

    Article  PubMed  Google Scholar 

  86. Guarrera JV, et al. Hypothermic machine perfusion of liver grafts for transplantation: technical development in human discard and miniature swine models. Transplant Proc. 2005;37:323–5. https://doi.org/10.1016/j.transproceed.2004.12.094.

    Article  CAS  PubMed  Google Scholar 

  87. Guarrera JV, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–81. https://doi.org/10.1111/j.1600-6143.2009.02932.x.

    Article  CAS  PubMed  Google Scholar 

  88. Guarrera JV, et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant. 2015;15:161–9. https://doi.org/10.1111/ajt.12958.

    Article  CAS  PubMed  Google Scholar 

  89. Dutkowski P, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015;262:764–70; discussion 770-761. https://doi.org/10.1097/SLA.0000000000001473.

    Article  PubMed  Google Scholar 

  90. Nasralla D, et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557:50–6. https://doi.org/10.1038/s41586-018-0047-9.

    Article  CAS  PubMed  Google Scholar 

  91. Ravikumar R, et al. Liver transplantation after ex vivo Normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 2016;16:1779–87. https://doi.org/10.1111/ajt.13708.

    Article  CAS  PubMed  Google Scholar 

  92. Bessems M, et al. Preservation of steatotic livers: a comparison between cold storage and machine perfusion preservation. Liver Transpl. 2007;13:497–504. https://doi.org/10.1002/lt.21039.

    Article  PubMed  Google Scholar 

  93. Boncompagni E, et al. Decreased apoptosis in fatty livers submitted to subnormothermic machine-perfusion respect to cold storage. Eur J Histochem. 2011;55:e40. https://doi.org/10.4081/ejh.2011.e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Okamura Y, et al. Impact of subnormothermic machine perfusion preservation in severely steatotic rat livers: a detailed assessment in an isolated setting. Am J Transplant. 2017;17:1204–15. https://doi.org/10.1111/ajt.14110.

    Article  CAS  PubMed  Google Scholar 

  95. Vairetti M, et al. Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase? Liver Transpl. 2009;15:20–9. https://doi.org/10.1002/lt.21581.

    Article  PubMed  Google Scholar 

  96. Kron P, Schlegel A, Mancina L, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J Hepatol. 2017;68:82. https://doi.org/10.1016/j.jhep.2017.08.028.

    Article  CAS  Google Scholar 

  97. Monbaliu D, et al. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof-of-concept study using discarded human livers. Liver Transpl. 2012;18:1495–507. https://doi.org/10.1002/lt.23550.

    Article  PubMed  Google Scholar 

  98. Watson CJE, et al. Observations on the ex situ perfusion of livers for transplantation. Am J Transplant. 2018;18:2005. https://doi.org/10.1111/ajt.14687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ceresa CDL, Nasralla D, Jassem W. Normothermic machine preservation of the liver: state of the art. Curr Transplant Rep. 2018;5:104–10. https://doi.org/10.1007/s40472-018-0186-9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jochmans I, et al. Past, present, and future of dynamic kidney and liver preservation and resuscitation. Am J Transplant. 2016;16:2545–55. https://doi.org/10.1111/ajt.13778.

    Article  CAS  PubMed  Google Scholar 

  101. Schlegel A, Muller X, Dutkowski P. Hypothermic machine preservation of the liver: state of the art. Curr Transplant Rep. 2018;5:93–102. https://doi.org/10.1007/s40472-018-0183-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Romagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patrono, D., Martini, S., Romagnoli, R. (2020). Liver Transplantation and NAFLD/NASH. In: Bugianesi, E. (eds) Non-Alcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95828-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95828-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95827-9

  • Online ISBN: 978-3-319-95828-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics