Skip to main content

Physical Activity in NAFLD: What and How Much?

  • Chapter
  • First Online:
Non-Alcoholic Fatty Liver Disease

Abstract

Physical activity is a key determinant of metabolic control and is commonly recommended for people with non-alcoholic fatty liver disease (NAFLD), usually alongside weight loss and dietary change. Physical activity and exercise have both been shown to improve liver health in NAFLD and should be included as part of the clinical care of all patients, regardless of where they sit on the NAFLD disease spectrum [1]. Reducing or breaking up sedentary time should also be a key therapeutic target with these patients.

Physical activity and exercise confer benefits, independent of weight loss, and are useful for those patients struggling to lose weight and are a key tool in weight loss maintenance. Both aerobic exercise and resistance training effectively reduce liver fat. The choice of training should be tailored based on patients’ preferences to be maintained in the long term and should be used as an adjunct to dietary change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402.

    Article  Google Scholar 

  2. Chalasani N, Younossi ZM, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    Article  PubMed  Google Scholar 

  3. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, et al. Exercise and type 2 diabetes. The American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33:e147–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas D, Elliott E, Naughton G. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;(3):CD002968.

    Google Scholar 

  5. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29:2518–27.

    Article  PubMed  Google Scholar 

  6. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh SD, Yoshinaga H, Muto T, Sakurai Y. Regular physical activity and coronary risk factors in Japanese men. Circulation. 1998;97:661–5.

    Article  CAS  PubMed  Google Scholar 

  8. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Zvibel I, Goldiner I, Blendis L, et al. Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology. 2008;48:1791–8.

    Article  PubMed  Google Scholar 

  9. Perseghin G, Lattuada G, De Cobelli F, Ragogna F, Ntali G, Esposito A, Belloni E, et al. Habitual physical activity is associated with intrahepatic fat content in humans. Diabetes Care. 2007;30:683–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hallsworth K, Thoma C, Moore S, Ploetz T, Anstee QM, Taylor R, Day CP, et al. Non-alcoholic fatty liver disease is associated with higher levels of objectively measured sedentary behaviour and lower levels of physical activity than matched healthy controls. Frontline Gastroenterol. 2015;6:44–51.

    Article  PubMed  Google Scholar 

  11. Krasnoff JB, Painter PL, Wallace JP, Bass NM, Merriman RB. Health-related fitness and physical activity in patients with nonalcoholic fatty liver disease. Hepatology. 2008;47:1158–66.

    Article  CAS  PubMed  Google Scholar 

  12. Church TS, Kuk JL, Ross R, Priest EL, Biltoff E, Blair SN. Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology. 2006;130:2023–30.

    Article  CAS  PubMed  Google Scholar 

  13. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43:1–2.

    PubMed  Google Scholar 

  14. Dunstan D, Salmon J, Owen N, Armstrong T, Zimmet P, Welborn T, Cameron A, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48:2254–61.

    Article  CAS  PubMed  Google Scholar 

  15. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care. 2008;31:369–71.

    Article  PubMed  Google Scholar 

  16. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH, Jensen MD, et al. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307:584–6.

    Article  CAS  PubMed  Google Scholar 

  17. Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, Cameron AJ, et al. Physical activity and television viewing in relation to risk of undiagnosed abnormal glucose metabolism in adults. Diabetes Care. 2004;27:2603–9.

    Article  PubMed  Google Scholar 

  18. Wittink H, Engelbert R, Takken T. The dangers of inactivity; exercise and inactivity physiology for the manual therapist. Man Ther. 2011;16:209–16.

    Article  CAS  PubMed  Google Scholar 

  19. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–516.

    Article  CAS  PubMed  Google Scholar 

  20. Tamakoshi A, Ohno Y, JACC Study Group. Self-reported sleep duration as a predictor of all-cause mortality: results from the JACC study, Japan. Sleep. 2004;27:51–4.

    PubMed  Google Scholar 

  21. Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, Hu FB. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med. 2003;163:205–9.

    Article  PubMed  Google Scholar 

  22. Levine JA. Sick of sitting. Diabetologia. 2015;58:1751–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;305:2448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Laaksonen DE, Lakka HM, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA. Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care. 2002;25:1612–8.

    Article  PubMed  Google Scholar 

  25. Chu AH, Moy FM. Joint association of sitting time and physical activity with metabolic risk factors among middle-aged Malays in a developing country: a cross-sectional study. PLoS One. 2013;8:e61723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunstan DW, Salmon J, Healy GN, Shaw JE, Jolley D, Zimmet PZ, Owen N, et al. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care. 2007;30:516–22.

    Article  CAS  PubMed  Google Scholar 

  27. Wijndaele K, Healy GN, Dunstan DW, Barnett AG, Salmon J, Shaw JE, Zimmet PZ, et al. Increased cardiometabolic risk is associated with increased TV viewing time. Med Sci Sports Exerc. 2010;42:1511–8.

    Article  PubMed  Google Scholar 

  28. Sugiyama T, Healy GN, Dunstan D, Salmon J, Owen N. Joint associations of multiple leisure-time sedentary behaviours and physical activity with obesity in Australian adults. Int J Behav Nutr Phys Act. 2008;5:35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet. 1953;265:1053–7.

    Article  Google Scholar 

  30. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:2655–67.

    Article  CAS  PubMed  Google Scholar 

  31. Levine JA. Nonexercise activity thermogenesis—liberating the life-force. J Intern Med. 2007;262:273–87.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton M, Etienne J, McClure W, Pavey B, Holloway A. Role of local contractile activity and muscle fibre type on LPL regulation during exercise. Am J Phys. 1998;275:1016–22.

    Google Scholar 

  33. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol. 2003;551:673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zderic TW, Hamilton MT. Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity. J Appl Physiol. 2006;100:249–57.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51:1781–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ryu S, Chang Y, Jung HS, Yun KE, Kwon MJ, Choi Y, Kim CW, et al. Relationship of sitting time and physical activity with non-alcoholic fatty liver disease. J Hepatol. 2015;63:1229–37.

    Article  PubMed  Google Scholar 

  37. ACSM. American College of Sports Medicine position stand. Appropriate physical activity intervention for weight loss and weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.

    Google Scholar 

  38. Department of Health. UK physical activity guidelines. In: Department of Health; 2011.

    Google Scholar 

  39. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002;106:388–91.

    Article  PubMed  Google Scholar 

  40. Agosti V, Graziano S, Artiaco L, Sorrentino G. Biological mechanisms of stroke prevention by physical activity in type 2 diabetes. Acta Neurol Scand. 2009;119:213–23.

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi T, Wojtaszewski JFP, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Phys. 1997;273:E1039–51.

    CAS  Google Scholar 

  42. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, Day CP, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011;60:1278–83.

    Article  PubMed  Google Scholar 

  43. Trenell MI, Hollingsworth KG, Lim EL, Taylor R. Increased daily walking improves lipid oxidation without changes in mitochondrial function in type 2 diabetes. Diabetes Care. 2008;31:1644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadoglou NPE, Iliadis F, Sailer N, Athanasiadou Z, Vitta I, Kapelouzou A, Karayannacos PE, et al. Exercise training ameliorates the effects of rosiglitazone on traditional and novel cardiovascular risk factors in patients with type 2 diabetes mellitus. Metabolism. 2010;59:599–607.

    Article  CAS  PubMed  Google Scholar 

  45. Toledo FGS, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007;56:2142–7.

    Article  CAS  PubMed  Google Scholar 

  46. Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol. 2012;56:255–66.

    Article  PubMed  Google Scholar 

  47. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57:157–66.

    Article  CAS  PubMed  Google Scholar 

  48. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. 2017;66:142–52.

    Article  PubMed  Google Scholar 

  49. Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP, Trenell MI. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci. 2015;129:1097–105.

    Article  CAS  Google Scholar 

  50. Keating SE, Hackett DA, Parker HM, O’Connor HT, Gerofi JA, Sainsbury A, Baker MK, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol. 2015;63:174–82.

    Article  PubMed  Google Scholar 

  51. Zhang HJ, He J, Pan LL, Ma ZM, Han CK, Chen CS, Chen Z, et al. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med. 2016;176:1074–82.

    Article  PubMed  Google Scholar 

  52. Zhang HJ, Pan LL, Ma ZM, Chen Z, Huang ZF, Sun Q, Lu Y, et al. Long-term effect of exercise on improving fatty liver and cardiovascular risk factors in obese adults: a 1-year follow-up study. Diabetes Obes Metab. 2017;19:284–9.

    Article  PubMed  Google Scholar 

  53. Pugh CJ, Sprung VS, Jones H, Richardson P, Shojaee-Moradie F, Umpleby AM, Green DJ, et al. Exercise-induced improvements in liver fat and endothelial function are not sustained 12 months following cessation of exercise supervision in nonalcoholic fatty liver disease. Int J Obes. 2016;40:1927–30.

    Article  CAS  Google Scholar 

  54. Shen J, Wong GL, Chan HL, Chan RS, Chan HY, Chu WC, Cheung BH, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46.

    Article  CAS  PubMed  Google Scholar 

  55. Cuthbertson DJ, Shojaee-Moradie F, Sprung VS, Jones H, Pugh CJ, Richardson P, Kemp GJ, et al. Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease. Clin Sci (Lond). 2016;130:93–104.

    Article  CAS  Google Scholar 

  56. Shojaee-Moradie F, Cuthbertson DJ, Barrett M, Jackson NC, Herring R, Thomas EL, Bell J, et al. Exercise training reduces liver fat and increases rates of VLDL clearance but not VLDL production in NAFLD. J Clin Endocrinol Metab. 2016;101:4219–28.

    Article  CAS  PubMed  Google Scholar 

  57. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Horowitz JF, Klein S. Lipid metabolism during endurance exercise. Am J Clin Nutr. 2000;72:558S–63.

    Article  CAS  PubMed  Google Scholar 

  59. Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52:2191–7.

    Article  CAS  PubMed  Google Scholar 

  60. van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, London R, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008;48:449–57.

    Article  PubMed  Google Scholar 

  61. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, Kechagias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–73.

    Article  CAS  PubMed  Google Scholar 

  62. Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP, Trenell MI. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond). 2015;129:1097–105.

    Article  CAS  Google Scholar 

  63. ACSM. ACSM’s resource manual for guidelines for exercise testing and prescription. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2006.

    Google Scholar 

  64. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590:1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guiraud T, Nigam A, Juneau M, Meyer P, Gayda M, Bosquet L. Acute responses to high-intensity intermittent exercise in CHD patients. Med Sci Sports Exerc. 2011;43:211–7.

    Article  PubMed  Google Scholar 

  66. Coquart JB, Lemaire C, Dubart AE, Luttembacher DP, Douillard C, Garcin M. Intermittent versus continuous exercise: effects of perceptually lower exercise in obese women. Med Sci Sports Exerc. 2008;40:1546–53.

    Article  PubMed  Google Scholar 

  67. Keating SE, George J, Johnson NA. The benefits of exercise for patients with non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2015;9:1247–50.

    Article  CAS  PubMed  Google Scholar 

  68. Larose J, Sigal RJ, Boule NG, Wells GA, Prud’Homme D, Fortier MS, Reid RD, et al. Effect of exercise training on physical fitness in type II diabetes mellitus. Med Sci Sports Exerc. 2010;42:1439–47.

    Article  PubMed  Google Scholar 

  69. Gordon BA, Benson AC, Bird SR, Fraser SF. Resistance training improves metabolic health in type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2009;83:157–75.

    Article  CAS  PubMed  Google Scholar 

  70. Ormsbee MJ, Choi MD, Medlin JK, Geyer GH, Trantham LH, Dubis GS, Hickner RC. Regulation of fat metabolism during resistance exercise in sedentary lean and obese men. J Appl Physiol. 2009;106:1529–37.

    Article  CAS  PubMed  Google Scholar 

  71. Ormsbee MJ, Thyfault JP, Johnson EA, Kraus RM, Choi MD, Hickner RC. Fat metabolism and acute resistance exercise in trained men. J Appl Physiol. 2007;102:1767–72.

    Article  CAS  PubMed  Google Scholar 

  72. Ballor D, Keesey R. A meta-analysis of the factors affecting exercise-induced changes in body mass, fat mass and fat-free mass in males and females. Int J Obes. 1991;15:717–26.

    CAS  PubMed  Google Scholar 

  73. Melby C, Scholl C, Edwards G, Bullough R. Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J Appl Physiol. 1993;75:1847–53.

    Article  CAS  PubMed  Google Scholar 

  74. Schuenke M, Mikat R, McBride J. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. Eur J Appl Physiol. 2002;86:411–7.

    Article  CAS  PubMed  Google Scholar 

  75. Kantartzis K, Thamer C, Peter A, Machann J, Schick F, Schraml C, Konigsrainer A, et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut. 2009;58:1281–8.

    Article  CAS  PubMed  Google Scholar 

  76. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Obesity Society. J Am Coll Cardiol. 2014;63:2985–3023.

    Article  PubMed  Google Scholar 

  77. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Activity Health. 2009;6:790–804.

    Article  Google Scholar 

  78. Hagströmer M, Oja P, Sjöström M. The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9:755–62.

    Article  PubMed  Google Scholar 

  79. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article  PubMed  Google Scholar 

  80. Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity— a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–39.

    Article  PubMed  Google Scholar 

  81. Crouter SE, Albright C, Bassett DRJ. Accuracy of polar S410 heart rate monitor to estimate energy cost of exercise. Med Sci Sports Exerc. 2004;36:1433–9.

    Article  PubMed  Google Scholar 

  82. Crouter SE, Schneider PL, Karabulut M, Bassett DRJ. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35:1455–60.

    Article  PubMed  Google Scholar 

  83. Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity. 2007;15:2371–9.

    Article  PubMed  Google Scholar 

  84. Fehling PC, Smith DL, Warner SE, Dalsky GP. Comparison of accelerometers with oxygen consumption in older adults during exercise. Med Sci Sports Exerc. 1999;31:171–5.

    Article  CAS  PubMed  Google Scholar 

  85. Chen KY, Acra SA, Majchrzak K, Donahue CL, Baker L, Clemens L, Sun M, et al. Predicting energy expenditure of physical activity using hip- and wrist-worn accelerometers. Diabetes Technol Therap. 2003;5:1023–33.

    Article  Google Scholar 

  86. Welk GJ, Blair SN, Wood K, Jones S, Thompson RW. A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc. 2000;32:S489–97.

    Article  CAS  PubMed  Google Scholar 

  87. St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr. 2007;85:742–9.

    Article  CAS  PubMed  Google Scholar 

  88. Harrison SA, Day CP. Benefits of lifestyle modification in NAFLD. Gut. 2007;56:1760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trenell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hallsworth, K., Trenell, M. (2020). Physical Activity in NAFLD: What and How Much?. In: Bugianesi, E. (eds) Non-Alcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95828-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95828-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95827-9

  • Online ISBN: 978-3-319-95828-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics