Skip to main content
  • 1663 Accesses

Abstract

For the last two decades, sepsis has been the object of growing attention by the clinical community. Since sepsis has been acknowledged as a time-dependent condition, its initial treatment has moved from the intensive care units to the emergency departments and other medical and surgical wards, in the attempt to treat this syndrome as soon as it is recognized. Considerable controversy exists about which treatments influence prognosis the most and how rapidly and intensively they should be administered. Antibiotics, source control, fluids, and vasopressors are the mainstay of therapy; interesting data has been recently published in each of these fields. Observational studies have confirmed that early antibiotic therapy is the treatment more clearly associated with the lowering of mortality in septic patients. Source control is relevant especially in severe abdominal infections, but its time metrics have still to be elucidated. Fluid administration, which should be performed aggressively in the resuscitative stage of patients in shock, should probably be quickly reduced and tailored to the patient as soon as vital parameters improve. Indeed, a prolonged positive fluid balance has repeatedly been associated with higher mortality. Vasopressors have a role only in patients who remain hypotensive after an adequate initial fluid challenge. Although they are not devoid of adverse effects, vasopressors should not be started too late when patients remain in critical conditions. Good evidence favors noradrenaline over dopamine as the drug with better benefit/risk profile in septic shock patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duran-Bedolla J, Montes de Oca-Sandoval MA, Saldaña-Navor V, et al. Sepsis, mitochondrial failure and multiple organ dysfunction. Clin Invest Med. 2014;37(2):E58–69.

    PubMed  Google Scholar 

  2. Seymour CW, Rosengart MR. Septic Shock. Advances in diagnosis and treatment. JAMA. 2015;314(7):708–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Perner A, Gordon AC, De Backer D. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med. 2016;42:1958–69.

    CAS  PubMed  Google Scholar 

  4. Nelson JE, Mathews KS, Weissman DE, et al. Integration of palliative care in the context of rapid response. A report from the Improving Palliative Care in the ICU Advisory Board. Chest. 2015;147(2):560–9.

    PubMed  PubMed Central  Google Scholar 

  5. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.

    Google Scholar 

  6. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 2003;29:530–8.

    PubMed  Google Scholar 

  7. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott MC. Defining and diagnosing sepsis. Emerg Med Clin N Am. 2017;35:1–9.

    Google Scholar 

  9. Simpson SQ. New sepsis criteria: a change we should not make. Chest. 2016;149(5):117–8.

    Google Scholar 

  10. Cortellaro F, Ferrari L, Molteni F, et al. Accuracy of point of care ultrasound to identify the source of infection in septic patients: a prospective study. Intern Emerg Med. 2017;12:371–8.

    PubMed  Google Scholar 

  11. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. New Engl J Med. 2013;369:840–51.

    CAS  PubMed  Google Scholar 

  12. Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee WL, Slutsky AS. Sepsis and endothelial permeability. New Engl J Med. 2010;363:689–91.

    CAS  PubMed  Google Scholar 

  14. Mira JC, Gentile LF, Mathias BJ. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45:253–62.

    PubMed  PubMed Central  Google Scholar 

  15. Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal MJ. Sepsis-induced cardiomyopathy. Curr Cardiol Rev. 2011;7:163–83.

    PubMed  PubMed Central  Google Scholar 

  16. Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3:48.

    PubMed  PubMed Central  Google Scholar 

  17. Kumar G, Kumar N, Taneja A, et al. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest. 2011;140:1223–31.

    PubMed  Google Scholar 

  18. Lagu T, Rothberg MB, Shieh MS, et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40:754–61.

    PubMed  Google Scholar 

  19. Kaukonen KM, Bailey M, Suzuki S, et al. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311:1308–16.

    CAS  PubMed  Google Scholar 

  20. Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42:625–31.

    PubMed  PubMed Central  Google Scholar 

  21. Vernon C, Letourneau JL. Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin. 2010;26:255–83.

    CAS  PubMed  Google Scholar 

  22. Revelly JP, Tappy L, Martinez A, et al. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med. 2005;33:2235–40.

    CAS  PubMed  Google Scholar 

  23. Puskarich MA, Trzeciak S, Shapiro NI, et al. Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation. 2011;82(10):1289–93.

    PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2014;42:2118–25.

    CAS  PubMed  Google Scholar 

  25. Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37:1670–7.

    CAS  PubMed  Google Scholar 

  26. Jones AE, Shapiro NI, Trzeciak S, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schuetz P, Birkhahn R, Sherwin R, et al. Serial procalcitonin predicts mortality in severe sepsis patients: results from the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) study. Crit Care Med. 2017;45:781–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Churpek MM, Snyder A, Han X, et al. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am J Respir Crit Care Med. 2017;195(7):906–11.

    PubMed  PubMed Central  Google Scholar 

  29. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45:1–67.

    Google Scholar 

  30. Sterling SA, Miller WR, Pryor J, et al. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 2015;43:1907–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martínez ML, Ferrer R, Torrents E, et al. Impact of source control in patients with severe sepsis and septic shock. Crit Care Med. 2017;45:11–9.

    PubMed  Google Scholar 

  32. The Surviving Sepsis Campaign. Statement from SSC Leadership on Time Zero in the Emergency Department. www.survivingsepsis.org/SiteCollectionDocuments/Time-Zero.pdf

  33. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    PubMed  Google Scholar 

  34. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–55.

    CAS  PubMed  Google Scholar 

  35. Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med. 2017;45(4):623–9.

    PubMed  PubMed Central  Google Scholar 

  36. Puskarich MA, Trzeciak S, Shapiro NI, et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39:2066–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leisman D, Huang V, Zhou Q, et al. Delayed second dose antibiotics for patients admitted from the emergency department with sepsis: prevalence, risk factors, and outcomes. Crit Care Med. 2017;45(6):956–65.

    PubMed  Google Scholar 

  38. Kalil AC, Johnson DW, Lisco SJ, Sun J. Early goal-directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med. 2017;45:607–14.

    PubMed  Google Scholar 

  39. Filbin MR, Arias SA, Camargo CA Jr, et al. Sepsis visits and antibiotic utilization in U.S. Emergency Departments. Crit Care Med. 2014;42:528–35.

    PubMed  Google Scholar 

  40. Abdul-Aziz MH, Lipman J, Mouton JW, et al. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin Respir Crit Care Med. 2015;36:136–53.

    PubMed  Google Scholar 

  41. Kollef MH, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–74.

    CAS  PubMed  Google Scholar 

  42. Shorr AF, Micek ST, Welch EC, et al. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med. 2011;39:46–51.

    CAS  PubMed  Google Scholar 

  43. Ferrer R, Artigas A, Suarez D, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–6.

    CAS  PubMed  Google Scholar 

  44. Burnham JP, Lane MA, Kollef MH. Impact of sepsis classification and multidrug-resistance status on outcome among patients treated with appropriate therapy. Crit Care Med. 2015;43:1580–6.

    PubMed  PubMed Central  Google Scholar 

  45. Vazquez-Guillamet C, Scolari M, Zilberberg MD, et al. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock. Crit Care Med. 2014;42:2342–9.

    CAS  PubMed  Google Scholar 

  46. Vazquez-Grande G, Kumar A. Optimizing antimicrobial therapy of sepsis and septic shock: focus on antibiotic combination therapy. Semin Respir Crit Care Med. 2015;36:154–66.

    PubMed  Google Scholar 

  47. Dupont H, Mentec H, Sollet J, et al. Impact of the appropriateness of initial antibiotic treatment on the outcome of ventilator-associated pneumonia. Intensive Care Med. 2001;27:355–62.

    CAS  PubMed  Google Scholar 

  48. Textoris J, Wiramus S, Martin C, Leone M. Antibiotic therapy in patients with septic shock. Eur J Anaesthesiol. 2011;28:318–24.

    PubMed  Google Scholar 

  49. Schuts EC, Hulscher MEJL, W Mouton JW, et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Inf Dis. 2016;16:847–56.

    Google Scholar 

  50. Silva BNG, Andriolo RB, Atallah ÁN, Salomão R. De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev. 2013;(3):CD007934.

    Google Scholar 

  51. Landelle C, Marimuthu K, Harbarth S. Infection control measures to decrease the burden of antimicrobial resistance in the critical care setting. Curr Opin Crit Care. 2014;20:499–506.

    PubMed  Google Scholar 

  52. de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.

    PubMed  Google Scholar 

  53. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62:e51–77.

    PubMed  PubMed Central  Google Scholar 

  54. Chu DC, Mehta AB, Walkey AJ. Practice patterns and outcomes associated with procalcitonin use in critically ill patients with sepsis. Clin Infect Dis. 2017;64(11):1509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Loflin R, Winters ME. Fluid resuscitation in severe sepsis. Emerg Med Clin N Am. 2017;35:60–74.

    Google Scholar 

  56. Marik PE, Lemson J. Fluid responsiveness: an evolution of our understanding. P Br J Anaesth. 2014;12:217–20.

    Google Scholar 

  57. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    CAS  Google Scholar 

  58. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    CAS  PubMed  Google Scholar 

  59. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    CAS  PubMed  Google Scholar 

  60. Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    CAS  PubMed  Google Scholar 

  61. Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.

    PubMed  Google Scholar 

  62. Sakr Y, Rubatto Birri PN, Kotfis K, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med. 2017;45:386–94.

    PubMed  Google Scholar 

  63. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

    PubMed  PubMed Central  Google Scholar 

  64. de Oliveira FS, Freitas FG, Ferreira EM, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30:97–101.

    PubMed  Google Scholar 

  65. Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    PubMed  Google Scholar 

  66. Hoste EA, Maitland K, Brudney CS, et al. Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth. 2014;113(5):740–7.

    PubMed  PubMed Central  Google Scholar 

  67. Leone M. Septic shock resuscitation: assembling the puzzle. Crit Care Med. 2014;42:2294–5.

    PubMed  Google Scholar 

  68. Annane D, Siami S, Jaber S, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.

    CAS  PubMed  Google Scholar 

  69. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.4 versus Ringers Acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

    CAS  PubMed  Google Scholar 

  70. Haase N, Perner A, Hennings LI, et al. Hydroxyethyl starch 130/0.38–0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. Br Med J. 2013;346:f839.

    Google Scholar 

  71. Mohd Yunos N, Bellomo R, Hegarty C, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.

    Google Scholar 

  72. Raghunathan K, Shaw A, Nathanson B, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med. 2014;42:1585–91.

    CAS  PubMed  Google Scholar 

  73. Finfer S, McEvoy S, Bellomo R, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.

    PubMed  Google Scholar 

  74. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.

    CAS  PubMed  Google Scholar 

  75. Jentzer JC, Coons JC, Link CB, et al. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther. 2015;20(3):249–60.

    CAS  PubMed  Google Scholar 

  76. Marik P, Bellomo S. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339–49.

    CAS  PubMed  Google Scholar 

  77. Avni T, Lador A, Lev S, et al. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015;10(8):e0129305. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523170/?report5reader. Accessed 10 Mar 2016.

    PubMed  PubMed Central  Google Scholar 

  78. De Backer D, Aldecoa C, Nijmi H, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012;40(3):725–30.

    PubMed  Google Scholar 

  79. Jason Waechter J, Kumar A, Lapinsky SE, et al. Interaction between fluids and vasoactive agents on mortality in septic shock: a multicenter, observational study. Crit Care Med. 2014;42:2158–68.

    PubMed  Google Scholar 

  80. Bai X, Yu W, Ji W. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care. 2014;18:532.

    PubMed  PubMed Central  Google Scholar 

  81. Loubani OM, Green RS. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015;30(3):653.e9–17.

    CAS  Google Scholar 

  82. Cardenas-Garcia J, Schaub KF, Belchikov YG, et al. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med. 2015;10(9):581–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Coen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Coen, D. (2019). Advances in Sepsis Management. In: Aseni, P., De Carlis, L., Mazzola, A., Grande, A.M. (eds) Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95114-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95114-0_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95113-3

  • Online ISBN: 978-3-319-95114-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics