Skip to main content

Examining Material Response Using X-Ray Phase Contrast Imaging

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Propagation based X-ray phase contrast imaging (PCI) offers unique opportunities for ultrafast, high-resolution measurements to examine dynamic materials response at extreme conditions. Within the past decade, efforts on the IMPULSE system at the Advanced Photon Source included the development of a novel Multi-frame X-ray PCI (MPCI) system that was used to obtain the first shock-movies to examine material deformation with micron spatial resolution on nanosecond timescale. The MPCI system has been systematically developed over the years to improve optical efficiencies, spatial resolution, obtain more images per experiment, and to develop a dual-imaging, dual-zoom feature useful for many applications. With the MPCI system, X-ray PCI has been successfully used to study a wide range of phenomena including jet-formation in metals, crack nucleation and propagation, response of additively manufactured materials, and detonator dynamics to name a few. In this paper, a brief overview of the MPCI system development is provided along with its application to study shock propagation in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asay, J.R., Fowles, G.R., Duvall, D.E., Miles, M.H., Tinder, R.F.: Effects of point defects on elastic precursor decay in LiF. J. Appl. Phys. 43, 2132 (1972)

    Article  Google Scholar 

  2. Dolan, D.H., Johnson, J.N., Gupta, Y.M.: Nanonsecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements. J. Chem. Phys. 123, 064702 (2005)

    Article  Google Scholar 

  3. Jensen, B.J., Gray, G.T., Hixson, R.S.: Direct measurement of the α-ε transition stress and kinetics for shocked iron. J. Appl. Phys. 105, 013502 (2009)

    Article  Google Scholar 

  4. Jensen, B.J., Cherne, F.J.: Dynamic compression of cerium in the low-pressure γ-α region of the phase diagram. J. Appl. Phys. 112, 013515 (2012)

    Article  Google Scholar 

  5. Jensen, B.J., Gupta, Y.M.: Time-resolved x-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF. J. Appl. Phys. 104, 013510 (2008)

    Article  Google Scholar 

  6. Jensen, B.J., Gupta, Y.M.: X-ray diffraction measurements in shock compressed magnesium doped LiF crystals. J. Appl. Phys. 100(5), 053512 (2006)

    Article  Google Scholar 

  7. Kalantar, D.H., Belak, J.F., Collins, G.W., Colvin, J.D., Davies, H.M., et al.: Direct observation of the $\alpha-\epsilon$ transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005)

    Article  Google Scholar 

  8. Jensen, B.J., Lou, S.N., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Kwiatkowski, K., Shimada, T., Dattelbaum, D.M.: Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Adv. 2(1), 012170–012176 (2012)

    Article  Google Scholar 

  9. Luo, S.N., Jensen, B.J., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Kwiatkowski, K., Shimada, T.: Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the advanced photon source. Rev. Sci. Instrum. 83(7), 073903 (2012)

    Article  Google Scholar 

  10. Jensen, B.J., Owens, C.T., Ramos, K.J., Yeager, J.D., Saavedra, R.A., Iverson, A.J., Luo, S.N., Fezzaa, K.: Hooks DE impact system for ultrafast synchrotron experiments. Rev. Sci. Instrum. 84(1), 013904–013905 (2013)

    Article  Google Scholar 

  11. Gupta, Y.M., Turneaure, S.J., Perkins, K., Zimmerman, K., Arganbright, N., Shen, G., Chow, P.: Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility. Rev. Sci. Instrum. 83(12), 123905 (2012)

    Article  Google Scholar 

  12. Montgomery, D.S., Nobile, A., Walsh, P.J.: Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging. Rev. Sci. Instrum. 75, 3986–3988 (2004)

    Article  Google Scholar 

  13. Yeager, J.D., Luo, S.N., Jensen, B.J., Fezzaa, K., Montgomery, D.S., Hooks, D.E.: High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Compos. A: Appl. Sci. Manuf. 43(6), 885–892 (2013). https://doi.org/10.1016/j.compositesa.2012.01.013

    Article  Google Scholar 

  14. Ramos, K.J., Jensen, B.J., Yeager, J.D., Bolme, C.A., Iverson, A.J., Carlson, C.A., Fezzaa, K.: Investigation of dynamic material cracking with in situ synchrotron-based measurements. In: Song, B., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, vol. 1, pp. 413–420. Springer International Publishing, Dordrecht (2014). ISBN 978–3–319-00770-0

    Google Scholar 

  15. Jensen, B.J., Cherne, F.J., Ramos, K.J., Iverson, A.J., Carlson, C.A., Yeager, J.D., Fezzaa, K., Dimonte, G., Hooks, D.E.: Multiphase material strength determined through shock generated Richtmyer-Meshkov instabilities. J. Appl. Phys. 118, 195903 (2015)

    Article  Google Scholar 

  16. Brown, E.N., Ramos, K.J., Dattelbaum, D.M., Jensen, B.J., Gray III, G.T., Matterson, B.M., Trujillo, C.P., Martinez, D.T., Pierce, T.H., Iverson, A.J., Carlson, C.A., Fezzaa, K., Furmanski, J.: In situ and postmortem measures of damage in polymers at high strain-rate. Conference Proceedings of the Society for Experimental Mechanics Series. 65(1), 53–59 (2015)

    Article  Google Scholar 

  17. Brown, E.N., Furmanski, J., Ramos, K.J., Dattelbaum, D.M., Jensen, B.J., Iverson, A.J., Carlson, C.A., Fezzaa, K., Trujillo, C.P., Martinez, D.T., Gray III, G.T., Patterson, B.M.: High-density polyethylene damage at extreme tensile conditions. J. Phys. Conf. Ser. 500, 112011 (2014)

    Article  Google Scholar 

  18. Hawreliak, J., Lind, J., Maddox, B., Barham, M., Messner, M., Barton, N., Jensen, B.J., Kumar, M.: Dynamic behavior of engineered lattice materials. Nature Scientific Reports. 6, 28094 (2016)

    Article  Google Scholar 

  19. Branch, B., Ionita, A., Clements, B., Montgomery, D., Jensen, B.J., Patterson, B., Mueller, A., Dattelbaum, D.M.: Controlling shockwave dynamics using architecture in periodic porous materials. J. Appl. Phys. 121, 135102 (2017)

    Article  Google Scholar 

  20. Willey, T.M., Champley, K., Hodgin, R., Lauderbach, L., Bagge-Hansen, M., May, C., Sanchez, N.J., Jensen, B.J., Iverson, A.J., Van Buuren, T.: X-ray Imaging and 3D Reconstruction of In-Flight Exploding Foil Initiator Flyers. J. Appl. Phys. 119, 235901 (2016)

    Article  Google Scholar 

  21. Sanchez, N.J., Neal, W.E., Jensen, B.J., Iverson, A.J., Carlson, C.A.: Dynamic Exploding Foil Initiator Imaging at the Advanced Photon Source. AIP Conf. Proc. 1979(160023), (2018)

    Google Scholar 

  22. Neal, W.E., Sanchez, N., Jensen, B.J., Gibson, J., Martinez, M., et al.: The effect of surface heterogeneity in exploding metal foils. AIP Conf. Proc. 1979(180007), (2018)

    Google Scholar 

  23. Mandal, A., Jensen, B.J., Aslam, T.D., Iverson, A.J.: Dynamic Compaction of Nickel Powder Examined by X-ray phase contrast imaging. AIP Conf. Proc. 1979(110010), (2018)

    Google Scholar 

  24. Ramos, K.J., Jensen, B.J., Hooks, D.E., Fezzaa, K., Yeager, J.D., Iverson, A.J., Carlson, C.A., Cherne, F.J.: In situ investigation of the dynamic response of energetic materials using IMPULSE at the advanced photon source. J. Phys. Conf. Ser. 500, 142028 (2014)

    Article  Google Scholar 

  25. Jensen, B.J., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Iverson, A.J., Carlson, C.A., Cherne, F.J., Kwiatkowski, K.: Dynamic experiments using IMPULSE at the advanced photon source. J. Phys. Conf. Ser. 500, 042001 (2014)

    Article  Google Scholar 

  26. Jensen, B.J., Montgomery, D.S., Iverson, A.J., Carlson, C.A., Clements, B., Short, M., Fredenburg, D.A.: X-ray phase contrast imaging of granular systems. LA-UR-17-27104 Los Alamos Laboratory Report (2017)

    Google Scholar 

  27. Branch, B., Jensen, B.J.: Dynamic X-ray diffraction to study the shock-induced a-e phase transition in iron. AIP Conf. Proc. 1979(040001), (2018)

    Google Scholar 

  28. Jensen, B.J., Holtkamp, D.B., Rigg, P.A., Dolan, D.H.: Accuracy limits and window corrections for Photon Doppler velocimetry. J. Appl. Phys. 101, 013523 (2007)

    Article  Google Scholar 

  29. LASL SHOCK HUGONIOT DATA (University of California Press, Berkley and Los Angeles, CA, 1980)

    Google Scholar 

  30. Carter WJ, Marsh SP. Hugoniot Equation of State of Polymers. LA-12006-MS Los Alamos National Laboratory (1995)

    Google Scholar 

  31. Millett, J.C.F., Bourne, N.K.: Shock and release of polycarbonate under one-dimensional strain. J. Mater. Sci. 41, 1683–1690 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed by Los Alamos National Laboratory (LANL) at Los Alamos and at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS). All x-ray phase contrast images shown here were obtained using LANL’s multi-frame x-ray phase contrast imaging system (MPCI) developed on the IMPULSE capability at APS. Chuck Owens, Joe Rivera, and John Wright (LANL) are thanked for sample assembly, experiment preparation and execution. Nick Sinclair and Adam Schuman (DCS/WSU) are thanked for their technical support at the Sector 35 beamline setting up the X-ray beam. The authors gratefully acknowledge the financial support provided by Science Campaigns, Joint Munitions Program (JMP), and National Security Technologies (NSTec) Shock Wave Physics Related Diagnostic (SWRD) program. LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. DCS is supported by the Department of Energy (DOE), National Nuclear Security Administration, under Award Number DE-NA0002442 and operated by Washington State University (WSU). This research used resources of APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jensen, B.J. et al. (2019). Examining Material Response Using X-Ray Phase Contrast Imaging. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics