Skip to main content

Computing the Line Index of Balance Using Integer Programming Optimisation

  • Chapter
  • First Online:
Optimization Problems in Graph Theory

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 139))

Abstract

An important measure of signed graphs is the line index of balance which has applications in many fields. However, this graph-theoretic measure was underused for decades because of the inherent complexity in its computation which is closely related to solving NP-hard graph optimisation problems like MAXCUT. We develop new quadratic and linear programming models to compute the line index of balance exactly. Using the Gurobi integer programming optimisation solver, we evaluate the line index of balance on real-world and synthetic datasets. The synthetic data involves Erdős-Rényi graphs, Barabási-Albert graphs, and specially structured random graphs. We also use well-known datasets from the sociology literature, such as signed graphs inferred from students’ choice and rejection, as well as datasets from the biology literature including gene regulatory networks. The results show that exact values of the line index of balance in relatively large signed graphs can be efficiently computed using our suggested optimisation models. We find that most real-world social networks and some biological networks have a small line index of balance which indicates that they are close to balanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Abelson, M.J. Rosenberg, Symbolic psycho-logic: a model of attitudinal cognition. Behav. Sci. 3(1), 1–13 (1958). https://doi.org/10.1002/bs.3830030102

    Article  Google Scholar 

  2. J. Akiyama, D. Avis, V. Chvàtal, H. Era, Balancing signed graphs. Discret. Appl. Math. 3(4), 227–233 (1981). https://doi.org/10.1016/0166-218X(81)90001-9

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Antal, P.L. Krapivsky, S. Redner, Dynamics of social balance on networks. Phys. Rev. E 72(3), 036121 (2005)

    Google Scholar 

  4. S. Aref, M.C. Wilson, Balance and frustration in signed networks. J. Complex Networks (2018, in press)

    Google Scholar 

  5. S. Aref, Signed networks from sociology and political science, systems biology, international relations, finance, and computational chemistry (2017). https://doi.org/10.6084/m9.figshare.5700832.v2

  6. S. Aref, A.J. Mason, M.C. Wilson, An exact method for computing the frustration index in signed networks using binary programming. arXiv:1611.09030 (2017)

    Google Scholar 

  7. S. Aref, M.C. Wilson, Measuring partial balance in signed networks. J. Complex Networks (2018, in press). https://doi.org/10.1093/comnet/cnx044

    Article  MathSciNet  Google Scholar 

  8. F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241 (1982)

    Article  MathSciNet  Google Scholar 

  9. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  10. J. Bramsen, Further algebraic results in the theory of balance. J. Math. Sociol. 26(4), 309–319 (2002)

    Article  MATH  Google Scholar 

  11. D. Cartwright, F. Harary, Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63(5), 277–293 (1956)

    Article  Google Scholar 

  12. M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen, L.S. Robertson, M.S. Skrzypek, B.R. Braun, K.L. Hopkins, P. Kondu, C. Lengieza, J.E. Lew-Smith, M. Tillberg, J.I. Garrels: YPD™, PombePD™ and WormPD™: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information. Nucleic Acids Res. 29(1), 75–79 (2001). https://doi.org/10.1093/nar/29.1.75

    Article  Google Scholar 

  13. B. DasGupta, G.A. Enciso, E. Sontag, Y. Zhang, Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. Biosystems 90(1), 161–178 (2007)

    Article  MATH  Google Scholar 

  14. T. Dewenter, A.K. Hartmann, Exact ground states of one-dimensional long-range random-field Ising magnets. Phys. Rev. B 90(1), 014207 (2014)

    Google Scholar 

  15. P. Doreian, A. Mrvar, Structural balance and signed international relations. J. Soc. Struct. 16, 1–49 (2015)

    Google Scholar 

  16. T. Došlić, D. Vukičević, Computing the bipartite edge frustration of fullerene graphs. Discret. Appl. Math. 155(10), 1294–1301 (2007). https://doi.org/10.1016/j.dam.2006.12.003

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Esmailian, S.E. Abtahi, M. Jalili, Mesoscopic analysis of online social networks: the role of negative ties. Phys. Rev. E 90(4), 042817 (2014)

    Google Scholar 

  18. E. Estrada, M. Benzi, Walk-based measure of balance in signed networks: detecting lack of balance in social networks. Phys. Rev. E 90(4), 1–10 (2014)

    Article  Google Scholar 

  19. G. Facchetti, G. Iacono, C. Altafini, Computing global structural balance in large-scale signed social networks. Proc. Natl. Acad. Sci. 108(52), 20953–20958 (2011). https://doi.org/10.1073/pnas.1109521108

    Article  Google Scholar 

  20. G. Facchetti, G. Iacono, C. Altafini, Exploring the low-energy landscape of large-scale signed social networks. Phys. Rev. E 86(3), 036116 (2012)

    Google Scholar 

  21. C. Flament, Applications of Graph Theory to Group Structure (Prentice-Hall, Upper Saddle River, 1963)

    MATH  Google Scholar 

  22. C. Flament, Équilibre d’un graphe: quelques résultats algébriques. Math. Sci. Hum. 8, 5–10 (1970)

    MathSciNet  Google Scholar 

  23. J.H. Fowler, Legislative cosponsorship networks in the US House and Senate. Soc. Networks 28(4), 454–465 (2006)

    Article  Google Scholar 

  24. N.G. Fytas, P.E. Theodorakis, A.K. Hartmann, Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model. Eur. Phys. J. B 89(9), 200 (2016)

    Google Scholar 

  25. Gurobi Optimization Inc.: Gurobi optimizer reference manual, Houston, TX (2018). www.gurobi.com/documentation/8.0/refman/index.html. Accessed 1 May 2015

  26. G. Gutin, D. Karapetyan, I. Razgon, Fixed-parameter algorithms in analysis of heuristics for extracting networks in linear programs, in International Workshop on Parameterized and Exact Computation (Springer, Berlin, 2009), pp. 222–233

    MATH  Google Scholar 

  27. F. Hadlock, Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975). https://dx.doi.org/10.1137/0204019

    Article  MathSciNet  MATH  Google Scholar 

  28. P.L. Hammer, Pseudo-boolean remarks on balanced graphs, in Numerische Methoden bei Optimierungsaufgaben Band 3 (Springer, Basel, 1977), pp. 69–78

    Book  Google Scholar 

  29. P. Hansen, Labelling algorithms for balance in signed graphs, in Problèmes Combinatoires et Théorie des Graphes (Éditions du Centre national de la recherche scientifique, Paris, 1978), pp. 215–217

    Google Scholar 

  30. F. Harary, On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Harary: Structural duality. Behav. Sci. 2(4), 255–265 (1957)

    Article  MathSciNet  Google Scholar 

  32. F. Harary, On the measurement of structural balance. Behav. Sci. 4(4), 316–323 (1959). https://doi.org/10.1002/bs.3830040405

    Article  MathSciNet  Google Scholar 

  33. F. Harary, J.A. Kabell, A simple algorithm to detect balance in signed graphs. Math. Soc. Sci. 1(1), 131–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Harary, M.H. Lim, D.C. Wunsch, Signed graphs for portfolio analysis in risk management. IMA J. Manag. Math. 13(3), 201–210 (2002). https://doi.org/10.1093/imaman/13.3.201

    Article  MATH  Google Scholar 

  35. A.K. Hartmann, Ground states of two-dimensional Ising spin glasses: fast algorithms, recent developments and a ferromagnet-spin glass mixture. J. Stat. Phys. 144(3), 519–540 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Heider, Social perception and phenomenal causality. Psychol. Rev. 51(6), 358–378 (1944)

    Article  Google Scholar 

  37. F. Hüffner, N. Betzler, R. Niedermeier, Separator-based data reduction for signed graph balancing. J. Comb. Optim. 20(4), 335–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Iacono, F. Ramezani, N. Soranzo, C. Altafini, Determining the distance to monotonicity of a biological network: a graph-theoretical approach. IET Syst. Biol. 4(3), 223–235 (2010)

    Article  Google Scholar 

  39. P.W. Kasteleyn, Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963). https://doi.org/10.1063/1.1703953

    Article  MathSciNet  Google Scholar 

  40. O. Katai, S. Iwai, Studies on the balancing, the minimal balancing, and the minimum balancing processes for social groups with planar and nonplanar graph structures. J. Math. Psychol. 18(2), 140–176 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Klotz, A.M. Newman, Practical guidelines for solving difficult mixed integer linear programs. Surv. Oper. Res. Manag. Sci. 18(1–2), 18–32 (2013). http://dx.doi.org/10.1016/j.sorms.2012.12.001

    MathSciNet  Google Scholar 

  42. J. Kunegis, Applications of structural balance in signed social networks. arXiv:1402.6865 [physics] (2014)

    Google Scholar 

  43. J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E.W. De Luca, S. Albayrak, Spectral analysis of signed graphs for clustering, prediction and visualization, in Proceedings of the 2010 SIAM International Conference on Data Mining, ed. by S. Parthasarathy, B. Liu, B. Goethals, J. Pei, C. Kamath, vol. 10 (Society for Industrial and Applied Mathematics, Philadelphia, 2010), pp. 559–570. https://doi.org/10.1137/1.9781611972801.49

    Chapter  Google Scholar 

  44. T.B. Lemann, R.L. Solomon, Group characteristics as revealed in sociometric patterns and personality ratings. Sociometry 15, 7–90 (1952)

    Article  Google Scholar 

  45. J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2010), pp. 1361–1370

    Google Scholar 

  46. L. Ma, M. Gong, H. Du, B. Shen, L. Jiao, A memetic algorithm for computing and transforming structural balance in signed networks. Knowl.-Based Syst. 85, 196–209 (2015). http://dx.doi.org/10.1016/j.knosys.2015.05.006

    Article  Google Scholar 

  47. M. Manssen, A.K. Hartmann, Matrix-power energy-landscape transformation for finding NP-hard spin-glass ground states. J. Glob. Optim. 61(1), 183–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.A. Marvel, S.H. Strogatz, J.M. Kleinberg, Energy landscape of social balance. Phys. Rev. Lett. 103(19), 198701 (2009)

    Google Scholar 

  49. O. Melchert, A. Hartmann, Information-theoretic approach to ground-state phase transitions for two-and three-dimensional frustrated spin systems. Phys. Rev. E 87(2), 022107 (2013)

    Google Scholar 

  50. M. Mézard, G. Parisi, The Bethe lattice spin glass revisited. Eur. Phys. J. B Condens. Matter Complex Syst. 20(2), 217–233 (2001)

    Article  MathSciNet  Google Scholar 

  51. Z. Neal, The backbone of bipartite projections: inferring relationships from co-authorship, co-sponsorship, co-attendance and other co-behaviors. Soc. Networks 39, 84–97 (2014)

    Article  Google Scholar 

  52. T. Newcomb, The Acquaintance Process (Holt, Rinehart and Winston, New York, 1966).“The General Nature of Peer Group Influence”, pp. 2–16 in College Peer Groups, ed. by T.M. Newcomb, E.K. Wilson. (Aldine Publishing Co, Chicago, 1961)

    Google Scholar 

  53. R.Z. Norman, F.S. Roberts, A derivation of a measure of relative balance for social structures and a characterization of extensive ratio systems. J. Math. Psychol. 9(1), 66–91 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Oda, T. Kimura, Y. Matsuoka, A. Funahashi, M. Muramatsu, H. Kitano, Molecular interaction map of a macrophage. AfCS Res. Rep. 2(14), 1–12 (2004)

    Google Scholar 

  55. K. Oda, Y. Matsuoka, A. Funahashi, H. Kitano, A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1(1) (2005)

    Article  Google Scholar 

  56. M. Petersdorf, Einige Bemerkungen über vollständige Bigraphen. Wiss. Z. Techn. Hochsch. Ilmenau 12, 257–260 (1966)

    MathSciNet  MATH  Google Scholar 

  57. K.E. Read, Cultures of the central highlands, New Guinea. Southwest. J. Anthropol. 10(1), 1–43 (1954)

    Article  Google Scholar 

  58. H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo, F. Sánchez-Solano, A. Santos-Zavaleta, I. Martinez-Flores, V. Jiménez-Jacinto, C. Bonavides-Martinez, J.Segura-Salazar, et al., Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34(suppl 1), D394–D397 (2006)

    Article  MathSciNet  Google Scholar 

  59. S.F. Sampson, A novitiate in a period of change. An experimental and case study of social relationships (PhD thesis), Cornell University, Ithaca, 1968

    Google Scholar 

  60. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975). https://doi.org/10.1103/PhysRevLett.35.1792

    Article  Google Scholar 

  61. E. Terzi, M. Winkler, A spectral algorithm for computing social balance, in Algorithms and Models for the Web Graph (Springer, Berlin, 2011), pp. 1–13

    MATH  Google Scholar 

  62. I. Tomescu, Note sur une caractérisation des graphes dont le degré de déséquilibre est maximal. Math. Sci. Hum. 42, 37–40 (1973)

    MATH  Google Scholar 

  63. G. Toulouse, Theory of the frustration effect in spin glasses: I. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, vol. 9 (World Scientific, Singapore, 1987), p. 99

    Google Scholar 

  64. T. Zaslavsky, Signed graphs: to: T. Zaslavsky, Discrete Applied Mathematics 4 (1982) 47–74 Erratum. Discret. Appl. Math. 5(2), 248 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Zaslavsky, Balanced decompositions of a signed graph. J. Comb. Theory Ser. B 43(1), 1–13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Zaslavsky, Matrices in the theory of signed simple graphs, advances in discrete mathematics and applications, in Proceedings of the International Conference on Discrete Mathematics, ICDM-2008, vol. 13 (Ramanujan Mathematical Society, Mysore, 2010), pp. 207–229

    Google Scholar 

  67. T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb. Dynamic Surveys in Combinatorics DS8 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the extremely valuable comments of the anonymous reviewers that have prevented incorrect attributions in the literature review section and helped improve the discussions in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samin Aref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aref, S., Mason, A.J., Wilson, M.C. (2018). Computing the Line Index of Balance Using Integer Programming Optimisation. In: Goldengorin, B. (eds) Optimization Problems in Graph Theory. Springer Optimization and Its Applications, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-319-94830-0_3

Download citation

Publish with us

Policies and ethics