Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 333 Accesses

Abstract

Quantum criticality accounts for the unconventional physics that develops in the vicinity of the critical point of a second-order quantum phase transition [1]. It is characterized by the power law divergence of the correlation length \(\xi \) as a non-thermal parameter g approaches a critical value \(g_c\): \(\xi \propto |g-g_c|^{-\nu }\), where \(\nu \) is called a critical exponent. The concept of quantum criticality provides a powerful universal framework to describe some of the most fascinating strongly correlated electrons phenomena, including heavy fermions [2] or high-\(T_C\) superconductivity [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The classification that follows is the same for classical phase transitions, one just has to replace the non-thermal parameter g by T.

  2. 2.

    For instance, the \(J\longrightarrow \infty \) fixed point in the 1CK model is not a quantum critical point.

  3. 3.

    Some strongly correlated materials have displayed a signature of quantum criticality up to 700 K [12].

  4. 4.

    It is argued in [6] that in general, the prefactor of a critical power law as \(T_\mathrm{{co}}\propto \Delta J^2\) can be different on each side of a quantum critical point. The reason for such an anisotropy is unclear to us.

  5. 5.

    This is possible since they remain approximately equal. The typical difference between \(G_1\) and \(G_3\) can be observed on the diagonal of the diagram, from the similar difference between \(G_2\) and \(G_{1,3}\).

  6. 6.

    To be precise, we plot \(G_2^{T \gg T_K}(T/T_K(\tau _2))\) versus \(G_1^{T \gg T_K}(T/T_K(\tau _1))\), where \(G^{T \gg T_K}(T/T_K) = {19,24}\, G_K \ln ^{-2}(T/{0.0037}T_K)\) is the tunnel regime of the universal curve (see Fig. 3.14a), and where \(T_K(\tau _1)\) and \(T_K(\tau _2)\) correspond to the \(T_K(\tau )\) in the inset of the same figure.

  7. 7.

    For example, see the Fig. 3 of [30], where the conductance of a QPC in series with an ohmic resistor of resistance \(R \approx {26}\,\mathrm{k\Omega } \approx R_K\) does not drop at low temperature in the limit of ballistic transmission \(\tau _\infty \longrightarrow 1\).

References

  1. S. Sachdev, B. Keimer, Quantum criticality (2011). arXiv preprint arXiv:1102.4628

  2. P. Gegenwart, Q. Si, F. Steglich, Quantum criticality in heavy-fermion metals. Nat. Phys. 4(3), 186–197 (2008)

    Article  Google Scholar 

  3. B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides. Nature 518(7538), 179–186 (2015)

    Article  ADS  Google Scholar 

  4. H.T. Mebrahtu, I.V. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger, G. Finkelstein, Quantum phase transition in a resonant level coupled to interacting leads. Nature 488(7409), 61–64 (2012)

    Article  ADS  Google Scholar 

  5. H.T. Mebrahtu, I.V. Borzenets, H. Zheng, Y.V. Bomze, A.I. Smirnov, S. Florens, H.U. Baranger, G. Finkelstein, Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment. Nat. Phys. 9(11), 732–737 (2013)

    Article  Google Scholar 

  6. A.J. Keller, L. Peeters, C.P. Moca, I. Weymann, D. Mahalu, V. Umansky, G. Zaránd, D. Goldhaber-Gordon, Universal Fermi liquid crossover and quantum criticality in a mesoscopic system. Nature 526, 237–240 (2015)

    Article  ADS  Google Scholar 

  7. M. Vojta, Impurity quantum phase transitions. Phil. Mag. 86(13–14), 1807–1846 (2006)

    Article  ADS  Google Scholar 

  8. M. Vojta, Quantum phase transitions. Rep. Prog. Phys. 66(12), 2069 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Cardy, Scaling and Renormalization in Statistical Physics, vol. 5 (Cambridge University Press, 1996)

    Google Scholar 

  10. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773–840 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Zinn-Justin, Critical phenomena: field theoretical approach. Scholarpedia 5(5), 8346 (2010)

    Article  ADS  Google Scholar 

  12. S. Martin, A.T. Fiory, R.M. Fleming, L.F. Schneemeyer, J.V. Waszczak, Normal-state transport properties of Bi\(_{2+x}\) Sr\(_{2-y}\) CuO\(_{6+\delta }\) crystals. Phys. Rev. B 41(1), 846 (1990)

    Article  Google Scholar 

  13. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, P. Coleman, The break-up of heavy electrons at a quantum critical point. Nature 424(6948), 524–527 (2003)

    Article  ADS  Google Scholar 

  14. P. Coleman, A.J. Schofield, Quantum criticality. Nature 433(7023), 226–229 (2005)

    Article  ADS  Google Scholar 

  15. H.V. Löhneysen, T. Pietrus, G. Portisch, H.G. Schlager, A. Schröder, M. Sieck, T. Trappmann, Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72(20), 3262 (1994)

    Article  ADS  Google Scholar 

  16. I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8(4), 267–276 (2012)

    Article  Google Scholar 

  17. A.A. Houck, H.E. Türeci, J. Koch, On-chip quantum simulation with superconducting circuits. Nat. Phys. 8(4), 292–299 (2012)

    Article  Google Scholar 

  18. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68(1), 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Andrei, C. Destri, Solution of the multichannel Kondo problem. Phys. Rev. Lett. 52(5), 364 (1984)

    Article  ADS  Google Scholar 

  20. A.M. Tsvelick, P.B. Wiegmann, Solution of the n-channel Kondo problem (scaling and integrability). Zeitschrift für Phys. B Condens. Matter 54(3), 201–206 (1984)

    Article  ADS  Google Scholar 

  21. W.W. Ludwig, Critical theory of overscreened Kondo fixed points. Nucl. Phys. B 360(2), 641–696 (1991)

    MathSciNet  ADS  Google Scholar 

  22. I. Affleck, A.W. Ludwig, Exact conformal-field-theory results on the multichannel Kondo effect: single-fermion green’s function, self-energy, and resistivity. Phys. Rev. B 48(10), 7297 (1993)

    Article  ADS  Google Scholar 

  23. R. Bulla, T.A. Costi, T. Pruschke, Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80(2), 395 (2008)

    Article  ADS  Google Scholar 

  24. D.L. Cox, A. Zawadowski, Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 47(5), 599–942 (1998)

    Article  Google Scholar 

  25. M. Pustilnik, L. Borda, L.I. Glazman, J. von Delft, Quantum phase transition in a two-channel-Kondo quantum dot device. Phys. Rev. B 69(11), 115316 (2004)

    Article  ADS  Google Scholar 

  26. A.K. Mitchell, E. Sela, Universal low-temperature crossover in two-channel Kondo models. Phys. Rev. B 85(23), 235127 (2012)

    Article  ADS  Google Scholar 

  27. A.K. Mitchell, L.A. Landau, L. Fritz, E. Sela, Universality and scaling in a charge two-channel Kondo device. Phys. Rev. Lett. 116(15) (2016)

    Google Scholar 

  28. A. Furusaki, K.A. Matveev, Theory of strong inelastic cotunneling. Phys. Rev. B 52(23), 16676–16695 (1995)

    Article  ADS  Google Scholar 

  29. Z. Iftikhar, A. Anthore, A.K. Mitchell, F.D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon, F. Pierre, Tunable quantum criticality and super-ballistic transport in a ‘charge’ kondo circuit, 08 (2017)

    Google Scholar 

  30. F.D. Parmentier, A. Anthore, S. Jezouin, H. Le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Strong back-action of a linear circuit on a single electronic quantum channel. Nat. Phys. 7(12), 935–938 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Iftikhar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, Z. (2018). Quantum Phase Transition in Multi-channel Kondo Systems. In: Charge Quantization and Kondo Quantum Criticality in Few-Channel Mesoscopic Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94685-6_4

Download citation

Publish with us

Policies and ethics