Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 419 Accesses

Abstract

This chapter is divided in three sections. The first one gives an introduction to the multi-channel Kondo effect, which occurs when a local spin is antiferromagnetically coupled with multiple electron continua. It has become central to study non-Fermi liquid physics, but its experimental observations remained mostly elusive. A powerful implementation called ‘charge’ Kondo effect will be explained in the second section. The charge model involves ‘charge’ degrees of freedom instead of ‘spin’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first observations were made in the 30’s, for a review see [2].

  2. 2.

    Everything happens as if the value of J was changing; but note that the true value of the exchange coupling never changes, it is only effectively renormalized. We will then distinguish the ‘bare’ value \(J_\infty \) from ‘renormalized’ value J (both are equal before renormalization).

  3. 3.

    It flows to zero in the ferromagnetic case, this case can be solved easily [4, 5].

  4. 4.

    The shape of the peak is modified by a Coulomb interaction, but this is well understood [12].

  5. 5.

    In the underscreened case \(N<2S\), the residual effective weak coupling to \(S'\) is ferromagnetic, the fixed point \(J_\mathrm {underscreened} \longrightarrow \infty \) is therefore stable. This case has been realized in recent experiments [19, 20], however it is not supposed to lead to a non-Fermi liquid ground state (but rather to a ‘singular’ Fermi liquid one [21]).

  6. 6.

    Private discussion with A.K. Mitchell; the proposal is from L. Fritz.

  7. 7.

    Matveev considers a metallic island, which therefore contains a macroscopic number of electrons. The charge Q we are considering is the charge in excess.

  8. 8.

    With our practical implementation in the QHE regime, a single channel is transmitted through the junction below \(\tau = 1\). In the tunnel regime, one can identify the transmission with the tunneling probability in this problem \(\tau = t^2 \ll 1\).

  9. 9.

    In this chapter, we will consider the individual conductance G of each QPC and not the serial conductance \(G_\mathrm {SET}\) through the whole device as in Chap. 2. For instance, with two symmetric channels \(G \triangleq G_1 = G_2\), the serial conductance is \(G_\mathrm {SET} = G_1 G_2/(G_1 + G_2) = G/2\).

  10. 10.

    In practice realized with a QPC in the QHE regime.

  11. 11.

    The case \(N=2\) is special because the fixed point is reached at an extremal value of \(\tau (\rho J) = 1\) (see Fig. 3.8).

  12. 12.

    We have only adjusted the position of the maximum of the peak at \(\delta V_g = 0\).

  13. 13.

    This initial renormalization occurs at energies of order of \(E_C\).

  14. 14.

    The NRG curves also present a minimum, this is a numerical artifact. The minimum occurs at \(T=E_C/k_B\) and the part of the curve with \(T \geqslant E_C/k_B\) should not be considered.

  15. 15.

    More generally \(k_B T_\mathrm {uni} \approx \min (E_C,D)/20\).

References

  1. J. Kondo, Resistance minimum in dilute magnetic alloys. Progress Theoret. Phys. 32(1), 37–49 (1964)

    Article  ADS  Google Scholar 

  2. G.J. van den Berg, J. de Nobel, Les propriétés à basses températures des alliages des métaux \({{\ll }}\)normaux\({{\gg }}\) avec des solutés de transition. Journal de Physique et le Radium 23(10), 665–671 (1962)

    Article  Google Scholar 

  3. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773–840 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  4. P.W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C: Solid State Phys. 3(12), 2436 (1970)

    Article  ADS  Google Scholar 

  5. T. Giamarchi. Quantum physics in one dimension (Clarendon Oxford, 2004)

    Google Scholar 

  6. N. Andrei, Diagonalization of the Kondo hamiltonian. Phys. Rev. Lett. 45(5), 379–382 (1980)

    Article  ADS  Google Scholar 

  7. P.B. Vigman, Exact solution of sd exchange model at t = 0. JETP Lett. 31, 364 (1980)

    ADS  Google Scholar 

  8. G. Toulouse, Exact expression of energy of Kondo Hamiltonian base state for a particular \(j_z\)-value. Comptes rendus hebdomadaires des séances de l’Académie des Sciences Serie B 268(18), 1200 (1969)

    Google Scholar 

  9. P.W. Anderson, G. Yuval, D.R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B 1(11),4464 (1970)

    Article  ADS  Google Scholar 

  10. P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures. J. Low Temp. Phys. 17(1–2), 31–42 (1974)

    Article  ADS  Google Scholar 

  11. L. Kouwenhoven, L. Glazman, Revival of the Kondo effect. Phys. World 14(1), 33 (2001)

    Article  Google Scholar 

  12. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance. Science 280(5363), 567–569 (1998)

    Article  ADS  Google Scholar 

  13. J. Li, W.-D. Schneider, R. Berndt, B. Delley, Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80(13), 2893 (1998)

    Article  ADS  Google Scholar 

  14. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, David Abusch-Magder, U. Meirav, M.A. Kastner, Kondo effect in a single-electron transistor. Nature 391(6663), 156–159 (1998)

    Article  ADS  Google Scholar 

  15. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, A tunable Kondo effect in quantum dots. Science 281(5376), 540–544 (1998)

    Article  ADS  Google Scholar 

  16. W.G. van der Wiel, Electron transport and coherence in semiconductor quantum dots and rings. PhD thesis, Technische Universiteit Delft, 2002

    Google Scholar 

  17. W.G. van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, The Kondo effect in the unitary limit. Science 289(5487), 2105–2108 (2000)

    Article  ADS  Google Scholar 

  18. P. Nozières, A. Blandin, Kondo effect in real metals. Journal de Physique 41(3), 19 (1980)

    Article  Google Scholar 

  19. N. Roch, S. Florens, T.A. Costi, W. Wernsdorfer, F. Balestro, Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett. 103(19), 197202 (2009)

    Article  ADS  Google Scholar 

  20. J.J. Parks, A.R. Champagne, T.A. Costi, W.W. Shum, A.N. Pasupathy, E. Neuscamman, S. Flores-Torres, P.S. Cornaglia, A.A. Aligia, C.A. Balseiro, G.K.-L. Chan, H.D. Abruna, D.C. Ralph, Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328(5984), 1370–1373 (2010)

    Article  ADS  Google Scholar 

  21. P. Mehta, N. Andrei, P. Coleman, L. Borda, G. Zarand, Regular and singular Fermi-liquid fixed points in quantum impurity models. Phys. Rev. B 72(1), 014430 (2005)

    Google Scholar 

  22. V.J. Emery, S. Kivelson, Mapping of the two-channel Kondo problem to a resonant-level model. Phys. Rev. B 46(17), 10812 (1992)

    Article  ADS  Google Scholar 

  23. D.M. Cragg, P. Lloyd, P. Nozières, On the ground states of some sd exchange Kondo Hamiltonians. J. Phys. C Solid State Phys. 13(5), 803 (1980)

    Article  ADS  Google Scholar 

  24. A.K. Mitchell, M.R. Galpin, S. Wilson-Fletcher, D.E. Logan, R. Bulla, Generalized Wilson chain for solving multichannel quantum impurity problems. Phys. Rev. B 89(12), 121105 (2014)

    Article  ADS  Google Scholar 

  25. R. Bulla, T.A. Costi, T. Pruschke, Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80(2), 395 (2008)

    Article  ADS  Google Scholar 

  26. N. Andrei, C. Destri, Solution of the multichannel Kondo problem. Phys. Rev. Lett. 52(5), 364 (1984)

    Article  ADS  Google Scholar 

  27. A.M. Tsvelick, P.B. Wiegmann, Solution of the n-channel Kondo problem (scaling and integrability). Zeitschrift für Physik B Condensed Matter 54(3), 201–206 (1984)

    Google Scholar 

  28. A.M. Tsvelick, The transport properties of magnetic alloys with multi-channel Kondo impurities. J. Phys. Condens. Matter 2(12), 2833 (1990)

    Article  ADS  Google Scholar 

  29. I. Affleck, A.W.W. Ludwig, Critical theory of overscreened Kondo fixed points. Nucl. Phys. B 360(2), 641–696 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  30. I. Affleck, A.W.W. Ludwig, Exact conformal-field-theory results on the multichannel Kondo effect: Single-fermion Green’s function, self-energy, and resistivity. Phys. Rev. B 48(10), 7297 (1993)

    Article  ADS  Google Scholar 

  31. A.M. Sengupta, A. Georges, Emery-Kivelson solution of the two-channel Kondo problem. Phys. Rev. B 49(14), 10020 (1994)

    Article  ADS  Google Scholar 

  32. L. Borda, L. Fritz, N. Andrei, G. Zaránd, Theory of inelastic scattering from quantum impurities. Phys. Rev. B 75(23), 235112 (2007)

    Article  ADS  Google Scholar 

  33. D.L. Cox, A. Zawadowski, Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 47(5), 599–942 (1998)

    Article  Google Scholar 

  34. F. Wilczek, Majorana returns. Nat. Phys. 5(9), 614–618 (2009)

    Article  Google Scholar 

  35. N. Read, D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61(15), 10267 (2000)

    Article  ADS  Google Scholar 

  36. A.Y. Kitaev, Unpaired majorana fermions in quantum wires. Phys. Usp. 44(10S), 131 (2001)

    Article  ADS  Google Scholar 

  37. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Aasen, M. Hell, R.V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T.S. Jespersen, J.A. Folk, C.M. Marcus, K. Flensberg, J. Alicea, Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016). Aug

    Google Scholar 

  39. H.T. Mebrahtu, I.V. Borzenets, H. Zheng, Y.V. Bomze, A.I. Smirnov, S. Florens, H.U. Baranger, G. Finkelstein. Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment. Nat. Phys. 9(11), 732–737 (2013)

    Article  ADS  Google Scholar 

  40. P. Coleman, A.J. Schofield, Simple description of the anisotropic two-channel Kondo problem. Phys. Rev. Lett. 75(11), 2184 (1995)

    Article  ADS  Google Scholar 

  41. P. Coleman, L.B. Ioffe, A.M. Tsvelik, Simple formulation of the two-channel Kondo model. Phys. Rev. B 52(9), 6611 (1995)

    Article  ADS  Google Scholar 

  42. J.G. Bednorz, K.A. Müller, Possible high-Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B Condensed Matter 64(2), 189–193 (1986)

    Article  ADS  Google Scholar 

  43. B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides. Nature 518(7538), 179–186 (2015)

    Article  ADS  Google Scholar 

  44. P. Gegenwart, Q. Si, F. Steglich, Quantum criticality in heavy-fermion metals. Nat. Phys. 4(3), 186–197 (2008)

    Article  ADS  Google Scholar 

  45. M. Fabrizio, A.O. Gogolin, Ph. Nozières, Anderson-Yuval approach to the multichannel Kondo problem. Phys. Rev. B 51(22), 16088 (1995)

    Article  ADS  Google Scholar 

  46. M. Vojta, Impurity quantum phase transitions. Phil. Mag. 86(13–14), 1807–1846 (2006)

    Article  ADS  Google Scholar 

  47. I. Affleck, A.W.W. Ludwig, H.-B. Pang, D.L. Cox, Relevance of anisotropy in the multichannel Kondo effect: comparison of conformal field theory and numerical renormalization-group results. Phys. Rev. B 45(14), 7918–7935 (1992)

    Article  ADS  Google Scholar 

  48. D.C. Ralph, A.W.W. Ludwig, J. von Delft, R.A. Buhrman, 2-channel Kondo scaling in conductance signals from 2 level tunneling systems. Phys. Rev. Lett. 72(7), 1064 (1994)

    Article  ADS  Google Scholar 

  49. K. Vladár, A. Zawadowski, Theory of the interaction between electrons and the two-level system in amorphous metals. I. Noncommutative model Hamiltonian and scaling of first order. Phys. Rev. B 28(3),1564–1581, 1983

    Article  ADS  Google Scholar 

  50. N.S. Wingreen, B.L. Altshuler, Y. Meir, Comment on “2-channel Kondo scaling in conductance signals from 2-level tunneling systems”. Phys. Rev. Lett. 75(4), 769–769 (1995)

    Article  ADS  Google Scholar 

  51. D.C. Ralph, A.W.W. Ludwig, J. von Delft, R.A. Buhrman, Ralph, et al., Reply. Phys. Rev. Lett. 75(4), 770–770 (1995)

    Article  ADS  Google Scholar 

  52. M. Arnold, T. Langenbruch, J. Kroha, Stable two-channel Kondo fixed point of an SU(3) quantum defect in a metal: renormalization-group analysis and conductance spikes. Phys. Rev. Lett. 99(18), 186601 (2007)

    Article  ADS  Google Scholar 

  53. R.M. Potok, I.G. Rau, H. Shtrikman, Y. Oreg, D. Goldhaber-Gordon, Observation of the two-channel Kondo effect. Nature 446(7132), 167–171 (2007)

    Article  ADS  Google Scholar 

  54. Y. Oreg, D. Goldhaber-Gordon, Two-channel Kondo effect in a modified single electron transistor. Phys. Rev. Lett. 90(13) (2003)

    Google Scholar 

  55. A.J. Keller, L. Peeters, C.P. Moca, I. Weymann, D. Mahalu, V. Umansky, G. Zaránd, D. Goldhaber-Gordon, Universal Fermi liquid crossover and quantum criticality in a mesoscopic system. Nature 526, 237–240 (2015)

    Article  ADS  Google Scholar 

  56. M. Pustilnik, L. Borda, L.I. Glazman, J. von Delft, Quantum phase transition in a two-channel-Kondo quantum dot device. Phys. Rev. B 69(11), 115316 (2004)

    Google Scholar 

  57. L.I. Glazman, K.A. Matveev, Lifting of the Coulomb blockade of one-electron tunneling by quantum fluctuations. Sov. Phys. JETP 71, 1031–1037 (1990)

    Google Scholar 

  58. K.A. Matveev, Quantum fluctuations of the charge of a metal particle under the Coulomb blockade conditions. Sov. Phys. JETP 72(5), 892–899 (1991)

    Google Scholar 

  59. M. Vojta, Quantum phase transitions. Rep. Prog. Phys. 66(12), 2069 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  60. K. Le Hur, Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system. Ann. Phys. 323(9), 2208–2240 (2008)

    Article  ADS  Google Scholar 

  61. K.A. Matveev, Coulomb blockade at almost perfect transmission. Phys. Rev. B 51(3), 1743–1751 (1995)

    Article  ADS  Google Scholar 

  62. E. Lebanon, A. Schiller, F.B. Anders, Coulomb blockade in quantum boxes. Phys. Rev. B 68(4) (2003)

    Google Scholar 

  63. L.P. Kadanoff, Critical Phenomena, in Proceedings of the Enrico Fermi Summer School Course (Academic, New York, 1971)

    Google Scholar 

  64. K.G. Wilson, J. Kogut, The renormalization group and the \(\varepsilon \) expansion. Phys. Rep. 12(2), 75–199 (1974)

    Article  Google Scholar 

  65. H. Yi, C.L. Kane, Quantum Brownian motion in a periodic potential and the multichannel Kondo problem. Phys. Rev. B 57(10), R5579–R5582 (1998)

    Article  ADS  Google Scholar 

  66. A. Furusaki, K.A. Matveev, Theory of strong inelastic cotunneling. Phys. Rev. B 52(23), 16676–16695 (1995)

    Article  ADS  Google Scholar 

  67. P. Simon, C. Mora, Scaling analysis near the non-Fermi liquid multichannel kondo fixed. Unpublished work

    Google Scholar 

  68. C. Mora, K. Le Hur, Probing dynamics of Majorana fermions in quantum impurity systems. Phys. Rev. B 88(24), 241302 (2013)

    Article  ADS  Google Scholar 

  69. P. Nozières, Kondo effect for spin 1/2 impurity a minimal effort scaling approach. Journal de Physique 39(10), 8 (1978)

    Article  Google Scholar 

  70. A.K. Mitchell, L.A. Landau, L. Fritz, E. Sela, Universality and scaling in a charge two-channel Kondo device. Phys. Rev. Lett. 116(15) (2016)

    Google Scholar 

  71. Z. Iftikhar, A. Anthore, A.K. Mitchell, F.D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon, F. Pierre, Tunable quantum criticality and super-ballistic transport in a ‘charge’ Kondo circuit. 08 (2017)

    Google Scholar 

  72. Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F.D. Parmentier, A. Cavanna, F. Pierre, Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states. Nature 526, 233–236 (2015)

    Article  ADS  Google Scholar 

  73. K.M. Stadler, A.K. Mitchell, J. von Delft, A. Weichselbaum, Interleaved numerical renormalization group as an efficient multiband impurity solver. Phys. Rev. B 93(23), 235101 (2016)

    Article  ADS  Google Scholar 

  74. G. Zaránd, G.T. Zimányi, F. Wilhelm, Two-channel versus infinite-channel Kondo models for the single-electron transistor. Phys. Rev. B 62(12), 8137 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Iftikhar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, Z. (2018). Observation of the Multi-channel ‘charge’ Kondo Effect. In: Charge Quantization and Kondo Quantum Criticality in Few-Channel Mesoscopic Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94685-6_3

Download citation

Publish with us

Policies and ethics