Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 330 Accesses

Abstract

In this chapter, we address the very basic problem of how the quantization of the charge as a multiple of the elementary electron charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value given by the NIST (http://physics.nist.gov/cgi-bin/cuu/Value?e) for this constant is: \(e =- (1.602 176 6208 \pm 0.000 000 0098)\times {10}^{-19}C\).

  2. 2.

    The metallic character of the island is of great importance as it will be explained below.

  3. 3.

    We have verified numerically that \(\dfrac{1}{4T} \displaystyle \int _{-\infty }^\infty \mathrm {d}E \dfrac{1}{\cosh ^2(E/(2k_BT))} \dfrac{\Gamma _+^2(\tau _L,\tau _R,N_g)}{E^2 + \Gamma _+^2(\tau _L,\tau _R,N_g)} = \dfrac{\Gamma _+(\tau _L,\tau _R,N_g)}{2 \pi k_BT} \psi '\left( 1/2 + \dfrac{\Gamma _+(\tau _L,\tau _R,N_g)}{2 \pi k_BT}\right) \).

  4. 4.

    Probably because of the large fluctuations of the phase at low temperature and \(\sqrt{1-\tau } \ll 1\) that makes the instanton technique less accurate (private discussion with our collaborators).

  5. 5.

    The shown sample is actually not the one used for the experiment but both belong to the same batch and are essentially the same. Indeed, the relatively important electron beam required to acquire such a high-resolution image might change the properties of the sample and introduce possible artifacts.

References

  1. Robert Andrews Millikan, On the elementary electrical charge and the Avogadro constant. Phys. Rev. 2(2), 109 (1913)

    Article  Google Scholar 

  2. T.A. Fulton, G.J. Dolan, Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59(1), 109 (1987)

    Article  ADS  Google Scholar 

  3. D.S. Duncan, C. Livermore, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, Direct measurement of the destruction of charge quantization in a single-electron box. Appl. Phys. Lett. 74(7), 1045–1047 (1999)

    Article  ADS  Google Scholar 

  4. S. Amasha, I.G. Rau, M. Grobis, R.M. Potok, H. Shtrikman, D. Goldhaber-Gordon, Coulomb blockade in an open quantum dot. Phys. Rev. Lett. 107(21), 216804 (2011)

    Google Scholar 

  5. D.I. Bradley, R.E. George, D. Gunnarsson, R.P. Haley, H. Heikkinen, Y.A. Pashkin, J. Penttilä, J.R. Prance, M. Prunnila, L. Roschier, M. Sarsby, Nanoelectronic primary thermometry below 4 mk. Nature Commun. 7 (2016)

    Google Scholar 

  6. Z. Iftikhar, A. Anthore, S. Jezouin, F.D. Parmentier, Y. Jin, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Primary thermometry triad at 6 mK in mesoscopic circuits. Nature Commun. 7, 12908 (2016)

    Article  ADS  Google Scholar 

  7. P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, M.H. Devoret, Strong tunneling in the single-electron transistor. Phys. Rev. Lett. 79(7), 1349 (1997)

    Article  ADS  Google Scholar 

  8. K.A. Matveev, Coulomb blockade at almost perfect transmission. Phys. Rev. B 51(3), 1743–1751 (1995)

    Article  ADS  Google Scholar 

  9. L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, W. Kool, C.J.P.M. Harmans, J.G. Williamson, A.A.M. Staring, C.T. Foxon, Single electron charging effects in semiconductor quantum dots. Z. für Phys. B Condens. Matter 85(3), 367–373 (1991)

    Google Scholar 

  10. N.C. van der Vaart, A.T. Johnson, L.P. Kouwenhoven, D.J. Maas, W. de Jong, M.P. de Ruyter, A. van Steveninck, C.J.P.M. van der Enden, Harmans, C.T. Foxon, Charging effects in quantum dots at high magnetic fields. Phys. B Condens. Matter 189(1–4), 99–110 (1993)

    Google Scholar 

  11. D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Electrostatics of edge channels. Phys. Rev. B 46(7), 4026 (1992)

    Article  ADS  Google Scholar 

  12. C. Pasquier, U. Meirav, F.I.B. Williams, D.C. Glattli, Y. Jin, B. Etienne, Quantum limitation on Coulomb blockade observed in a 2D electron system. Phys. Rev. Lett. 70(1), 69 (1993)

    Article  ADS  Google Scholar 

  13. I.L. Aleiner, L.I. Glazman, Mesoscopic charge quantization. Phys. Rev. B, 57(16), 9608 (1998)

    Article  ADS  Google Scholar 

  14. L.I. Glazman, K.A. Matveev, Lifting of the Coulomb blockade of one-electron tunneling by quantum fluctuations. Sov. Phys. JETP 71, 1031–1037 (1990)

    Google Scholar 

  15. C.H. Crouch, C. Livermore, R.M. Westervelt, K.L. Campman, A.C. Gossard, Coulomb oscillations in partially open quantum dots. Superlattices Microstruct. 20(3), 377–381 (1996)

    Article  ADS  Google Scholar 

  16. S.M. Cronenwett, S.M. Maurer, S.R. Patel, C.M. Marcus, C.I. Duruöz, J.S. Harris Jr., Mesoscopic Coulomb blockade in one-channel quantum dots. Phys. Rev. Lett. 81(26), 5904 (1998)

    Article  ADS  Google Scholar 

  17. S. Jezouin, Z. Iftikhar, A. Anthore, F.D. Parmentier, U. Gennser, A. Cavanna, A. Ouerghi, I.P. Levkivskyi, E. Idrisov, E.V. Sukhorukov, L.I. Glazman, F. Pierre, Controlling charge quantization with quantum fluctuations. Nature 536(7614), 58–62 (2016)

    Article  ADS  Google Scholar 

  18. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Electron Transport in Quantum Dots. Kluwer Series, editor, Mesoscopic Electron Transport E345, 105–214 (1997)

    Google Scholar 

  19. M.H. Devoret, H. Grabert, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures: [Proceedings of the NATO Advanced Study Institute on Single Charge Tunneling, held March 5–15, 1991, in Les Houches, France] (Plenum Press, 1992)

    Google Scholar 

  20. K.A. Matveev, Quantum fluctuations of the charge of a metal particle under the Coulomb blockade conditions. Sov. Phys. JETP 72(5), 892–899 (1991)

    Google Scholar 

  21. K.A. Matveev, A.V. Andreev, Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling. Phys. Rev. B 66(4), 045301 (2002)

    Article  ADS  Google Scholar 

  22. H. Yi, C.L. Kane, Coulomb blockade in a quantum dot coupled strongly to a lead. Phys. Rev. B, 53(19), 12956 (1996)

    Article  ADS  Google Scholar 

  23. Y.V. Nazarov, Coulomb blockade without tunnel junctions. Phys. Rev. Lett. 82(6), 1245 (1999)

    Article  ADS  Google Scholar 

  24. A. Furusaki, K.A. Matveev, Theory of strong inelastic cotunneling. Phys. Rev. B 52(23), 16676–16695 (1995)

    Article  ADS  Google Scholar 

  25. I.P. Levkivskyi, E. Idrisov, E.V. Sukhorukov. Untitled. in preparation

    Google Scholar 

  26. K. Le Hur, G. Seelig, Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model. Phys. Rev. B 65(16), 165338 (2002)

    Article  ADS  Google Scholar 

  27. S.E. Korshunov, Coherent and incoherent tunneling in a Josephson junction with a “periodic” dissipation. Sov. J. Exper. Theor. Phys. Lett. 45, 434 (1987)

    ADS  Google Scholar 

  28. Gerd Schön and Andrej Dmitievič Zaikin, Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198(5–6), 237–412 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Iftikhar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, Z. (2018). Charge Quantization. In: Charge Quantization and Kondo Quantum Criticality in Few-Channel Mesoscopic Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94685-6_2

Download citation

Publish with us

Policies and ethics