Skip to main content

On the Expected Number of Distinct Gapped Palindromic Factors

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

  • 598 Accesses

Abstract

An \(\alpha \)-gapped palindromic factor of a word is a factor of the form \(uv\overline{u}\), where \(\overline{u}\) is the reversal of u and where \(|uv|\le \alpha |u|\) for some fixed \(\alpha \ge 1\). We give an asymptotic estimate of the expected number of distinct palindromic factors in a random word for a memoryless source, where each letter is generated independently from the other, according to some fixed probability distribution on the alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reversal of \(u=u_1\cdots u_n\) is \(\overline{u}=u_n\cdots u_1\).

  2. 2.

    The case where some coordinates are zero is covered by setting \(x\log x=0\) for \(x=0\).

  3. 3.

    We disregard rounding errors in lengths; properly dealing with them by means of integer parts would only yield clumsier notations without changing the asymptotic results.

References

  1. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing \(\alpha \)-gapped repeats. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 245–255. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_19

    Chapter  Google Scholar 

  2. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)

    Article  MathSciNet  Google Scholar 

  3. Duchon, P., Nicaud, C.: On the biased partial word collector problem. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 413–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_30

    Chapter  Google Scholar 

  4. Duchon, P., Nicaud, C., Pivoteau, C.: Gapped pattern statistics. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, Warsaw, Poland, 4–6 July 2017. LIPIcs, vol. 78, pp. 21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  5. Dumitran, M., Gawrychowski, P., Manea, F.: Longest gapped repeats and palindromes. Discrete Math. Theoret. Comput. Sci. 19(4) (2017)

    Google Scholar 

  6. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and optimal algorithms for all maximal \(\alpha \)-gapped repeats and palindromes - finding all maximal \(\alpha \)-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)

    Article  MathSciNet  Google Scholar 

  7. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoret. Comput. Sci. 410(51), 5365–5373 (2009)

    Article  MathSciNet  Google Scholar 

  8. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. J. Discrete Algorithms 46-47, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  9. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. (CSUR) 28(1), 33–37 (1996)

    Article  Google Scholar 

  11. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random words. Fundam. Inform. 145(3), 371–384 (2016)

    Article  MathSciNet  Google Scholar 

  12. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. Eur. J. Comb. 68, 249–265 (2018)

    Article  MathSciNet  Google Scholar 

  13. Tanimura, Y., Fujishige, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: A faster algorithm for computing maximal \(\alpha \)-gapped repeats in a string. In: Iliopoulos, C.S., Puglisi, S.J., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 124–136. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Nicaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duchon, P., Nicaud, C. (2018). On the Expected Number of Distinct Gapped Palindromic Factors. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics