Skip to main content

Surface Properties of Biodegradable Polymers for Food Packaging

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

Biodegradable polymers derived from biomass such as polysaccharides (starches, chitosan, and gums) and proteins (gelatin, soy, and zein) have been explored tremendously as potential food packaging materials. Their unique characteristics, for example, edible, abundance, renewable and low-cost allow these materials to be utilized in many forms such as films and coatings. However, biodegradable polymers exhibit high water vapour permeability and solubility. Functional properties of biodegradable polymers can be enhanced by blending with other polymers, lipids, surfactants, emulsifiers or other additives. Combining some polymers and additives will change the microstructure, mechanical, barrier and surface properties of films. Therefore, surface properties can influence the final applications of films and coatings. Interestingly, surface properties of polymers can be tailored using some treatment. Lack of discussion on surface properties of biodegradable films is noticeable. This chapter presents the surface properties of biodegradable films and coatings from various sources and their characterizations. Some surface treatments on films aiming to improve their characteristics and effect of the surface on active packaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhedi O, Nasri R, Jridi M, Kchaou H, Nasreddine B, Karbowiak T, Debeaufort F, Nasri M (2018) Composite bioactive films based on smooth-hound viscera proteins and gelatin: physicochemical characterization and antioxidant properties. Food Hydrocoll 74:176–186

    Article  CAS  Google Scholar 

  • Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque PBS, Cerqueira MA, Vicente AA, Teixeira JA, da Cunha C (2017) Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: influence on physicochemical properties. Int J Biol Macromol 96:727–735

    Article  CAS  PubMed  Google Scholar 

  • Álvarez K, Famá L, Gutiérrez TJ (2017) Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: Part 1. Bentham Science, Sharjah, pp 358–400. EE.UU. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4. https://doi.org/10.2174/9781681084534117010015

    Chapter  Google Scholar 

  • Andersson C (2008) New ways to enhance the functionality of paperboard b surface treatment- a review. Packag Technol Sci 21(6):339–373

    Article  CAS  Google Scholar 

  • Antoniou J, Liu F, Majeed H, Zhong F (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocoll 44:309–319

    Article  CAS  Google Scholar 

  • Bosquez-Molina E, Tomás SA, Rodríguez-Hueza ME (2010) Influence of CaCl2 on the water vapor permeability and the surface morphology of mesquite gum based edible films. LWT Food Sci Technol 43:1419–1425

    Article  CAS  Google Scholar 

  • Bracone M, Merino D, González J, Alvarez VA, Gutiérrez TJ (2016) Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science, New York, pp 119–155 EE.UU. ISBN: 978-1-63485-831-1

    Google Scholar 

  • Bravin B, Peressini D, Sensidoni A (2004) Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. J Agric Food Chem 52(21):6448–6455

    Article  CAS  PubMed  Google Scholar 

  • Butler TI, Morris BA (2012) PE-based multilayer film structures in plastic films in food packaging- materials, technology, and applications. Ebnesajjad, S. Elsevier, Oxford, pp 21–52

    Google Scholar 

  • Caro N, Medina E, Díaz-Dosque M, López L, Abugoch L, Tapia C (2016) Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocoll 52:520–532

    Article  CAS  Google Scholar 

  • Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  CAS  Google Scholar 

  • Cerqueira MA, Bourbon AI (2011) Galactomannans use in the development of edible films/ coatings for food applications. Trends Food Sci Technol 22:662–671

    Article  CAS  Google Scholar 

  • Chang SH, Chain C (2013) Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films. Appl Surf Sci 282:735–740

    Article  CAS  Google Scholar 

  • De Oliviera RRL, Albuquerque DAC, Cruz TGS, Yamaji FM, Leite FL (2012) In: Bellitto V (ed) Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications in atomic force microscopy—imaging, measuring and manipulating surfaces at the atomic scale. InTech, Rijeka, pp 147–175

    Google Scholar 

  • de Paula Herrmann PS, Cristiana M, Pedroso Yoshida CM, Antunes AJ, Marcondes JA (2004) Surface evaluation of whey protein films by atomic force microscopy and water vapour permeability analysis. Packag Technol Sci 17:267–273

    Article  CAS  Google Scholar 

  • Deng L, Kang X, Liu Y, Feng F, Zhang H (2018) Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocoll 74:324–332

    Article  CAS  Google Scholar 

  • Díaz O, Candia D, Cobos A (2016) Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocoll 55:189–199

    Article  CAS  Google Scholar 

  • Díaz O, Candia D, Cobos A (2017) Whey protein film properties as affected by ultraviolet treatment under alkaline conditions. Int Dairy J 73:84–91

    Article  CAS  Google Scholar 

  • Dowling DP, Stallard CP (2015) Achieving enhanced material finishing using cold plasma treatments. Trans Inst Met Finish 93(3):119–125

    Article  CAS  Google Scholar 

  • Etxabide A, Coma V, Guerrero P, Gardrat C, de la Caba K (2017) Effect of cross-linking in surface properties and antioxidant activity of gelatin films incorporated with a curcumin derivative. Food Hydroll 66:168–175

    Article  CAS  Google Scholar 

  • Garrido T, Leceta I, de la Caba K, Guerrero P (2018) Chicken feathers as a natural source of Sulphur to develop sustainable protein films with enhanced properties. Int J Biol Macromol 106:523–531

    Article  CAS  PubMed  Google Scholar 

  • Geogiopoulos P, Christopoulos A, Koutsoumpis S, Kontou E (2016) The effect of surface treatment on the performance of flax/biodegradable composites. Compos Part B 106:88–98

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Musavi M, Oromiehie AR, Rezayi K, Rad ER, Milani J (2007) Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films. LWT 40:1191–1197

    Article  CAS  Google Scholar 

  • Giancone T, Torrieri E, Pierro PD, Cavella S, Giosafatto CVL, Masi P (2011) Effect of surface density on the engineering properties of high methoxyl pectin-based edible films. Food Bioprocess Technol 4:1228–1236

    Article  CAS  Google Scholar 

  • Giosafatto CVL, Pierro PD, Gunning P, Mackie A, Porta R, Mariniello L (2014) Characterization of citrus pectin edible films containing transglutaminase-modified phaseolin. Carbohydr Polym 106:200–208

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez TJ (2017a) Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydr Polym 165:169–179. https://doi.org/10.1016/j.carbpol.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez TJ (2017b) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener, Beverly, MA, pp 183–232. EE.UU. ISBN: 978-1-119-36350-7. https://doi.org/10.1002/9781119364849.ch8

    Chapter  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017a) Films made by blending poly(ε-caprolactone) with starch and flour from Sagu rhizome grown at the Venezuelan amazons. J Polym Environ 25(3):701–716. https://doi.org/10.1007/s10924-016-0861-9

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017b) Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydr Polym 178:260–269. https://doi.org/10.1016/j.carbpol.2017.09.026

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017c) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, González G (2016) Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food Bioprocess Technol 9(11):1812–1824. https://doi.org/10.1007/s11947-016-1765-3

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2016a) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403. https://doi.org/10.1016/j.ijbiomac.2015.10.020

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez TJ, Suniaga J, Monsave A, García NL (2016b) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocoll 54:234–244. https://doi.org/10.1016/j.foodhyd.2015.10.012

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, González Seligra P, Medina Jaramillo C, Famá L, Goyanes S (2017) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener, Beverly, MA, pp 337–370. EE.UU. ISBN: 978-1-119-22362-7. https://doi.org/10.1002/9781119441632.ch14

    Chapter  Google Scholar 

  • Gutiérrez TJ, Ollier R, Alvarez VA (2018) Surface properties of thermoplastic starch materials reinforced with natural fillers. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Springer International, Basel, pp 131–158. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0. https://doi.org/10.1007/978-3-319-66417-0_5

    Chapter  Google Scholar 

  • Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N (2017) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5(6):2058–2076

    Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Jonhed A, Andersson C, Järnström L (2008) Effects of film forming and hy- drophobic properties of starches on surface sized packaging paper. Packag Technol Sci 21(3):123–135

    Article  CAS  Google Scholar 

  • Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67:155–163

    Article  CAS  Google Scholar 

  • Karbowiak T, Debeaufort F, Champion D, Voilley A (2006) Wetting properties at the surface of iota-carrageenan-based edible films. J Colloid Interface Sci 294:400–410

    Article  CAS  PubMed  Google Scholar 

  • Kovačević V, Vrsaljko D, Lučić Blagojević S, Leskovac M (2008) Adhesion parameters at the interface in nanoparticulate filled polymer systems. Polym Eng Sci 48(10):1994–2002

    Article  CAS  Google Scholar 

  • Kurek M, Galus S, Debeaufort F (2014) Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging Shelf Life 1:56–67

    Article  Google Scholar 

  • Liston EM, Mrtinu L, Wertheimer MR (1994) In: Strobel M, Lyons CS, Mittal KL (eds) Plasma surface modification of polymers for improved adhesion: a critical review in plasma surface modification of polymers: relevance to adhesion. VSP BV, Zeist, pp 3–42

    Google Scholar 

  • López-García J, Bílek F, Lehocký M, Junkar I, Mozetic M, Sowe M (2013) Enhanced printability of polyethylene through air plasma treatment. Vacuum 95:43–49

    Article  CAS  Google Scholar 

  • Mali S, Grossmann MVE, Garcıa MA, Martino MN, Zaritzky NE (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56(2):129–135

    Article  CAS  Google Scholar 

  • Mathew S, Abraham TE (2008) Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll 22:826–835

    Article  CAS  Google Scholar 

  • Molavi H, Behfar S, Shariati MA, Kaviani M, Atarod S (2015) A review on biodegradable starch based film. J Microbiol Biotechnol Food Sci 4(5):456–461

    Article  CAS  Google Scholar 

  • Muxika A, Extabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  • Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519

    Article  CAS  Google Scholar 

  • Nisar T, Wang Z, Yang X, Tian Y, Iqbal M, Guo Y (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 106:670–680

    Article  CAS  PubMed  Google Scholar 

  • Nur Hanani ZA (2016) In: Caballero B, Finglas PM, Toldrá F (eds) Gelatin in encyclopedia of food and health. Academic Press, Oxford, pp 191–195

    Chapter  Google Scholar 

  • Phan TD, Debeaufort F, Luu D, Voilley A (2005) Functional properties of edible agar-based and starch-based films for food quality preservation. J Agric Food Chem 53:973–981

    Article  CAS  PubMed  Google Scholar 

  • Razavi SMA, Amini AM, Zahedi Y (2015) Characterisation of a new biodegradable edible film based on sage seed gum: influence of plasticiser type and concentration. Food Hydrocoll 43:290–298

    Article  CAS  Google Scholar 

  • Rhim JW, Gennadios A, Fu D, Weller CL, Hanna MA (1999) Properties of ultraviolet irradiated protein films. Lebensm Wiss Technol 32:129–133

    Article  CAS  Google Scholar 

  • Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT Food Sci Technol 76:33–39

    Article  CAS  Google Scholar 

  • Sengupta T, Han JH (2014) In: Han JH (ed) Surface chemistry of food, packaging, and biopolymer materials in innovations in food packaging, 2nd edn. Academic Press, Tokyo, pp 52–86

    Google Scholar 

  • Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849

    Article  CAS  PubMed  Google Scholar 

  • Sionkowska A, Płanecka A (2013) Surface properties of thin films based on the mixtures of chitosan and silk fibroin. J Mol Liq 186:157–162

    Article  CAS  Google Scholar 

  • Suyatma NE, Tighzert L, Copinet A (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Jiang Y (2007) Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Res Int 40(4):504–509

    Article  CAS  Google Scholar 

  • Tarek AR, Rasco BA, Sablani SS (2015) Ultraviolet-C light inactivation kinetics of E. coli on bologna beef packaged in plastic films. Food Bioprocess Technol 8(6):1267–1280

    Article  CAS  Google Scholar 

  • Terpiłowski K, Tomczyńska-Mleko M, Nishinari K, Mleko S (2017) Surface properties of ion-inducted whey protein gels deposited on cold plasma treated support. Food Hydrocoll 71:17–25

    Article  CAS  Google Scholar 

  • Ward G, Nussinovitch A (2017) Characterizing the gloss properties of hydrocolloid films. Food Hydrocoll 11:357–365

    Article  Google Scholar 

  • Wilpiszewska K, Antosik AK, Spychaj T (2015) Novel hydrophilic carboxymethyl starch/montmorillonite nano composite films. Carbohydr Polym 128:82–89

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Y, Ma QY, Dai Y, Hu FP, Wei GB, Xu TC, Zeng QW, Wang SZ, Xie WD (2017) Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate. Appl Surf Sci 396:1264–1272

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang Y, Han L, Wang B, Xu H, Zhong Y, Zhang L, Mao Z, Sui X (2018) Biodegradable regenerated cellulose-dispersed composites with improved properties via a Pickering emulsion process. Carbohydr Polym 179:86–92

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ma Y, Ren L, Tong J, Liu Z, Xie L (2009) Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr Polym 76:632–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Nur Hanani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nur Hanani, Z.A. (2018). Surface Properties of Biodegradable Polymers for Food Packaging. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_6

Download citation

Publish with us

Policies and ethics