Skip to main content

Uniqueness, Stability and Numerical Reconstruction of a Time and Space-Dependent Conductivity for an Inverse Hyperbolic Problem

  • Conference paper
  • First Online:
Nonlinear and Inverse Problems in Electromagnetics (PIERS 2017, PIERS 2017)

Abstract

This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determination of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Beilina, M. Cristofol, S. Li, Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain. Math. Meth. Appl. Sci., 1–19 (2018). https://doi.org/10.1002/mma.4728

  2. M. Cristofol, S. Li, E. Soccorsi, Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. J. Math. Control Relat. Fields 6(3) (2016)

    Article  MathSciNet  Google Scholar 

  3. S. Li, M. Yamamoto, An inverse problem for Maxwell’s equations in isotropic and non-stationary media. Appl. Anal. 92(11), 2335–2356 (2013)

    Article  MathSciNet  Google Scholar 

  4. M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Probl. 20, 1033–1052 (2004)

    Article  MathSciNet  Google Scholar 

  5. M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients. Appl. Anal. 83, 983–1014 (2004)

    Article  MathSciNet  Google Scholar 

  6. M. Bellassoued, D. Jellali, M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data. Appl. Anal. 87, 1105–1119 (2008)

    Article  MathSciNet  Google Scholar 

  7. M. Bellassoued, M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl. 85, 193–224 (2006)

    Article  MathSciNet  Google Scholar 

  8. M. Bellassoued, M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement. Appl. Anal. 87, 901–920 (2008)

    Article  MathSciNet  Google Scholar 

  9. O. Imanuvilov, M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17, 717–728 (2001)

    Article  MathSciNet  Google Scholar 

  10. O. Imanuvilov, M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement. Inverse Probl. 19, 157–171 (2003)

    Article  MathSciNet  Google Scholar 

  11. M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Probl. 8, 575–596 (1992)

    Article  MathSciNet  Google Scholar 

  12. M.V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21, 477–560 (2013)

    Article  MathSciNet  Google Scholar 

  13. M.V. Klibanov, M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation. Appl. Anal. 85, 515–538 (2006)

    Article  MathSciNet  Google Scholar 

  14. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78, 65–98 (1999)

    Article  MathSciNet  Google Scholar 

  15. L. Beilina, M. Cristofol, S. Li, M. Yamamoto, Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations. Inverse Probl. 34, 015001 (2018)

    Article  MathSciNet  Google Scholar 

  16. O. Hussein, D. Lesnic, M. Yamamoto, Reconstruction of space-dependent potential and/or damping coefficients in the wave equation. Comput. Math. Appl. 74, 14351454 (2017)

    Article  MathSciNet  Google Scholar 

  17. L. Beilina, Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation, in Communications in Nonlinear Science and Numerical Simulation (Elsevier, 2016). https://doi.org/10.1016/j.cnsns.2016.01.016

    Article  MathSciNet  Google Scholar 

  18. L. Beilina, Adaptive hybrid FEM/FDM methods for inverse scattering problems. Inverse Probl. Inf. Technol. 1(3), 73–116 (2002)

    Google Scholar 

  19. L. Beilina, N.T. Thành, M.V. Klibanov, J. Bondestam-Malmberg, Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity. Inverse Probl. 30, 105007 (2014)

    Article  Google Scholar 

  20. V. Isakov, Carleman type estimates and their applications, in New Analytic and Geometric Methods in Inverse Problems, ed. by K. Bingham, Y. Kurylev, E. Somersalo (Springer, Berlin, 2004), pp. 93–125

    Chapter  Google Scholar 

  21. R. Courant, K. Friedrichs, H. Lewy, On the partial differential equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  Google Scholar 

  22. A. Bakushinsky, M.Y. Kokurin, A. Smirnova, Iterative Methods for Ill-posed Problems. Inverse and Ill-Posed Problems Series, vol. 54 (De Gruyter, 2011)

    Google Scholar 

  23. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic Publishers, Boston, 2000)

    Chapter  Google Scholar 

  24. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, London, 1995)

    Book  Google Scholar 

  25. M. Bellassoued, M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems (Springer, Tokyo, 2017)

    Book  Google Scholar 

Download references

Acknowledgments

The part of the research was done during the sabbatical stay of LB at the Institut de Mathématiques de Marseille, Aix-Marseille University, France, which was supported by the sabbatical programme at the Faculty of Science, University of Gothenburg, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beilina, L., Cristofol, M., Li, S. (2018). Uniqueness, Stability and Numerical Reconstruction of a Time and Space-Dependent Conductivity for an Inverse Hyperbolic Problem. In: Beilina, L., Smirnov, Y. (eds) Nonlinear and Inverse Problems in Electromagnetics. PIERS PIERS 2017 2017. Springer Proceedings in Mathematics & Statistics, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-94060-1_10

Download citation

Publish with us

Policies and ethics