Skip to main content

Second-Order Hydrodynamics and Universality in Non-conformal Holographic Fluids

  • Chapter
  • First Online:
Applications of the Gauge/Gravity Duality

Part of the book series: Springer Theses ((Springer Theses))

  • 479 Accesses

Abstract

This chapter contains our work on second-order non-conformal hydrodynamics. We first derive five new Kubo formulae that express second-order transport coefficients in terms of three-point correlators of the stress tensor. We then apply these Kubo formulae to a large class of non-conformal holographic fluids at infinite coupling. We find strong evidence that the Haack–Yarom identity [14], which relates second-order coefficients in conformal holographic fluids at infinite coupling, continues to hold for holographic fluids without conformal symmetry. Within our class of models, we prove that the identity is still obeyed when taking into account leading non-conformal corrections, and show numerically that the identity continues to hold further away from conformal symmetry.

This chapter is based on P. Kleinert and J. Probst, Second-Order Hydrodynamics and Universality in Non-Conformal Holographic Fluids, JHEP 12 (2016) 091, [1610.01081] (Ref. [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Essentially because all (non-topological) matter couples to the volume element \(\sqrt{-g}\).

  2. 2.

    Other recent holographic and non-holographic studies of second-order transport in non-conformal relativistic fluids include Refs. [52,53,54,55,56,57,58].

  3. 3.

    In both cases the bulk geometry can be viewed as a compactification of AdS and one can essentially borrow the higher dimensional AdS/CFT dictionary [59, 60].

  4. 4.

    Note that if we wanted to extract all fifteen second-order coefficients we would have to turn on metric perturbations in the scalar sound channel, too. Such perturbations, however, would necessarily source fluctuations of \(\delta \epsilon \) and \(\underline{v}\).

  5. 5.

    Eq. (4.21) constitutes the extension of the linear-response result (3.17) to quadratic-response. The factor of \(\frac{1}{2}\) in the first line of Eq. (4.21) avoids double-counting of the symmetric \(h_{\rho \sigma }=h_{\sigma \rho }\). The factor of \(\frac{1}{8}=\frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}\) in the second line avoids double-counting of the symmetric \(h_{\rho \sigma }=h_{\sigma \rho }\) and \(h_{\kappa \lambda }=h_{\lambda \kappa }\), and accounts for the term representing the second-order expansion.

  6. 6.

    Ref. [7] defines the Fourier-transformed three-point functions with the opposite sign for the two momenta. In our convention, the shear viscosity is given by \(\eta =i\left.\partial _{q_0}G^{xy,xz,yz}(q,p)\right|_{q=p=0}\), as opposed to Eq. (21) in Ref. [7], \(\eta =-i\left.\partial _{q_0}G^{xy,xz,yz}(q,p)\right|_{q=p=0}\). We further believe that the factors of 2 in their Eqs. (22) and (23) should be absent, in agreement with their Eq. (26).

  7. 7.

    Given that the bulk metric will be diagonal to leading order, \(g_{mn}\propto \delta _{mn}\), we can ensure that \(\mathrm {EOM}^{xy}=\mathcal {O}(\epsilon ^3)\) by solving the usual form of Einstein’s equations with lower indices, \(\mathrm {EOM}_{mn}\), to \(\mathcal {O}(\epsilon )\) and \(\mathrm {EOM}_{xy}\) to \(\mathcal {O}(\epsilon ^2)\).

  8. 8.

    We restrict ourselves to operators of dimension \(\Delta =3\) because the holographic renormalisation has already been done for this class of holographic RG flows. See Appendix C of Ref. [1] for details.

  9. 9.

    Inserting (4.38) into (4.32) and switching to the radial coordinate \(z=\sqrt{u}/\left(\pi T\right)\), the \(AdS_5\) black-brane geometry takes the more familiar form \(\mathrm {d}s^2=\frac{L^2}{z^2}\left(\frac{\mathrm {d}z^2}{f} -f \mathrm {d}t^2 +\mathrm {d}\underline{x}^2\right)\) (see e.g. Eq. (2.15)).

  10. 10.

    It is for this technical reason that we restrict ourselves to perturbations in the transverse shear channel and do not consider metric perturbations in the scalar sound channel. The drawback of this restriction is that we only gain access to five independent combinations of transport coefficients, Eq. (4.2), as explained in Sect. 4.2.1.

  11. 11.

    Moreover, \(H^{(1t)}\) and \(H^{(1z)}\) are again normalised to 1 at the boundary and, as we will discuss in Sect. 4.4.2, are subject to the same boundary conditions at the horizon as they are in cases (4.42) and (4.46). Hence \(H^{(1t)}\) and \(H^{(1z)}\) here are indeed the same as in perturbations (4.42) and (4.46).

  12. 12.

    Provided the holographic RG flow is indeed described by a black-brane geometry with a horizon, Eq. (4.32) (rather than by a confining geometry, for example).

  13. 13.

    Curiously, it turns out that the one hydro metric fluctuation for which we did not find a solution cancels out in the expression for \(\left<T^{\mu \nu }\right>\) presented in Sect. 4.5.1.

  14. 14.

    Note that potentials \(L^2\,V=-12-\left(3/2\right)\phi ^2+\mathcal {O}\left(\phi ^4\right)\) which follow from an appropriate superpotential \(L\,W=-\left(3/2\right)-\phi ^2/8+\mathcal {O}\left(\phi ^4\right)\) via \(V=8\left((\partial W/\partial \phi )^2-(2/3)W^2\right)\) automatically satisfy condition (4.57). We believe that condition (4.57) was overlooked in Ref. [50].

  15. 15.

    There are two first-order fluctuations \(a\in \big \{1t,1z\big \}\), each with three relevant hydro series coefficients \(j\in \big \{0,1,2\big \}\), as well as three second-order fluctuations \(a\in \big \{2tt,2zz,2tz\big \}\), each with six relevant hydro series coefficients \(j\in \big \{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\big \}\).

  16. 16.

    Provided the RG flow is holographically described by a black-brane geometry with a horizon, Eq. (4.32).

  17. 17.

    In the conformal case \(\phi =0\), Eq. (4.38), this reduces to \(\bar{\epsilon }=3\bar{p}=\frac{3\pi ^3L^3}{16 G_N}T^4\) or, for \(\mathcal {N}=4\) specifically where \(l_P^8=G_N\,L^5\text {Vol}(S^5) =\left(\pi ^4L^8\right)/\left(2N^2\right)\), \(\bar{\epsilon }=3\bar{p}=\frac{3\pi ^2}{8}N^2T^4\)  [80].

  18. 18.

    We chose to explicitly state the result for \(\lambda _1+\lambda _3/4\) (rather than for \(\lambda _1+\kappa ^*/2\) or \(\lambda _3-2\kappa ^*\)) because \(\lambda _3\), contrary to \(\kappa ^*\), does not vanish for conformal fluids in general [7, 64] and thus allows for a more meaningful comparison with the conformal case. It does, however, vanish in conformal holographic theories at strictly infinite coupling [24].

  19. 19.

    The fact that the number of degrees of freedom at an \(AdS_{d+1}\) fixed point with AdS radius \(\ell \) scales with \(\ell ^{d-1}\) can be seen from the Weyl anomaly [81]. The holographic Weyl anomaly \(\left<T^\mu {}_\mu \right>\) is given by a surface contribution of dimension d, multiplied by \(1/G_N\) times the appropriate power \(\ell ^{d-1}\) of \(\ell \) to ensure that the Weyl anomaly has the correct dimension d. Because \(\left<T^\mu {}_\mu \right>\) is directly proportional to the central charge, the number of degrees of freedom, too, scales with the AdS radius as \(\ell ^{d-1}\).

  20. 20.

    The fact that \(c_s^2=\mathrm {d}\bar{p} / \mathrm {d}\bar{\epsilon }\) can be written as \(c_s^2=\left(\mathrm {d}\log T\right)/\left(\mathrm {d}\log s\right)\) follows from standard thermodynamic relations. The first law for an uncharged system with energy E and entropy S reads \(\mathrm {d}E=T\,\mathrm {d}S - \bar{p}\,\mathrm {d}V\). Using the extensivity of E, S, and V, combined with the homogeneous function theorem, gives \(E=T\,S-\bar{p}\,V\). This yields \(0=S\,\mathrm {d}T - V\mathrm {d}\bar{p}\), implying \(\mathrm {d}\bar{p}=s\,\mathrm {d}T\), as well as \(\bar{\epsilon }+\bar{p}=Ts\). Combining the last two relations gives \(\mathrm {d}\bar{\epsilon }=T\,\mathrm {d}s\), hence \(\mathrm {d}\bar{p} / \mathrm {d}\bar{\epsilon } =\left(s\,\mathrm {d}T\right)/\left(T\,\mathrm {d}s\right)\).

  21. 21.

    Note that this implies that the GPPZ flow [69] with superpotential \(W=-\frac{3}{4}\left(1+\cosh (\phi /\sqrt{3})\right)\) does not admit stable black-brane solutions below a certain minimum temperature because its potential asymptotes to \(V\rightarrow -\left(3/8\right)\exp (2\phi /\sqrt{3})\) for large \(\phi \).

  22. 22.

    Recall that \(V_{(1)}\left[\Delta _\mathrm {IR}\rightarrow 4+\right] = V_{(2)}\left[\gamma \rightarrow 0+\right]\), see Eqs. (4.108) and (4.112).

  23. 23.

    The same relations were found in Ref. [92] by coupling the fluid to external sources.

  24. 24.

    Consistently, \(H=0\) does not follow from the generalised Onsager relations, which were derived from an effective action for hydrodynamics in Refs. [96, 97] and which should apply to any uncharged conformal fluid.

References

  1. P. Kleinert, J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids. JHEP 12, 091 (2016). arXiv:1610.01081

  2. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987)

    MATH  Google Scholar 

  3. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 45, 473001 (2012). arXiv:1205.5040

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 04, 100 (2008). arXiv:0712.2451

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy. Class. Quant. Grav. 27, 025006 (2010). arXiv:0906.4787

    Article  MathSciNet  ADS  Google Scholar 

  6. L.P. Kadanoff, P.C. Martin, Hydrodynamic equations and correlation functions. Ann. Phys. 24, 419–469 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  7. G.D. Moore, K.A. Sohrabi, Kubo formulae for second-order hydrodynamic coefficients. Phys. Rev. Lett. 106, 122302 (2011). arXiv:1007.5333

    Article  ADS  Google Scholar 

  8. G.D. Moore, K.A. Sohrabi, Thermodynamical second-order hydrodynamic coefficients. JHEP 11, 148 (2012). arXiv:1210.3340

    Google Scholar 

  9. M. Gyulassy, L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A750, 30–63 (2005). arXiv:nucl-th/0405013

    Article  ADS  Google Scholar 

  10. BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A757, 1–27 (2005). arXiv:nucl-ex/0410020

  11. B.B. Back et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). arXiv:nucl-ex/0410022

    Article  ADS  Google Scholar 

  12. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys.A757, 184–283 (2005). arXiv:nucl-ex/0410003

  13. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A757, 102–183 (2005). arXiv:nucl-ex/0501009

  14. G.D. Moore, O. Saremi, Bulk viscosity and spectral functions in QCD. JHEP 09, 015 (2008). arXiv:0805.4201

    Article  ADS  Google Scholar 

  15. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200

    Article  MathSciNet  Google Scholar 

  16. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    Article  MathSciNet  ADS  Google Scholar 

  19. D.T. Son, A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications. JHEP 09, 042 (2002). arXiv:hep-th/0205051

    Article  MathSciNet  ADS  Google Scholar 

  20. C.P. Herzog, D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence. JHEP 03, 046 (2003). arXiv:hep-th/0212072

    Google Scholar 

  21. G. Policastro, D.T. Son, A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. JHEP 09, 043 (2002). arXiv:hep-th/0205052

    Google Scholar 

  22. G. Policastro, D.T. Son, A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves. JHEP 12, 054 (2002). arXiv:hep-th/0210220

    Article  MathSciNet  Google Scholar 

  23. D.T. Son, A.O. Starinets, Viscosity, black holes, and quantum field theory. Ann. Rev. Nucl. Part. Sci. 57, 95–118 (2007). arXiv:0704.0240

    Article  ADS  Google Scholar 

  24. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, Nonlinear fluid dynamics from gravity. JHEP 02, 045 (2008). arXiv:0712.2456

    Google Scholar 

  25. G. Policastro, D.T. Son, A.O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066

    Article  ADS  Google Scholar 

  26. P. Kovtun, D.T. Son, A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons. JHEP 10, 064 (2003). arXiv:hep-th/0309213

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Buchel, J.T. Liu, Universality of the shear viscosity in supergravity. Phys. Rev. Lett. 93, 090602 (2004). arXiv:hep-th/0311175

    Article  ADS  Google Scholar 

  28. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  29. A. Buchel, On universality of stress-energy tensor correlation functions in supergravity. Phys. Lett. B 609, 392–401 (2005). arXiv:hep-th/0408095

    Article  MathSciNet  ADS  Google Scholar 

  30. A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm. Phys. Lett. B 670, 442–445 (2009). arXiv:0806.3797

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Brustein, A.J.M. Medved, The Ratio of shear viscosity to entropy density in generalized theories of gravity. Phys. Rev. D 79, 021901 (2009). arXiv:0808.3498

    Article  ADS  Google Scholar 

  32. N. Iqbal, H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009). arXiv:0809.3808

    Article  ADS  Google Scholar 

  33. S. Cremonini, The shear viscosity to entropy ratio: a status report. Mod. Phys. Lett. B 25, 1867–1888 (2011). arXiv:1108.0677

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Teaney, The Effects of viscosity on spectra, elliptic flow, and HBT radii. Phys. Rev. C 68, 034913 (2003). arXiv:nucl-th/0301099

  35. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid? Prog. Part. Nucl. Phys. 53, 273–303 (2004). arXiv:hep-ph/0312227

    Article  ADS  Google Scholar 

  36. P. Romatschke, U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007). arXiv:0706.1522

    Article  ADS  Google Scholar 

  37. H. Song, U.W. Heinz, Suppression of elliptic flow in a minimally viscous quark-gluon plasma. Phys. Lett. B 658, 279–283 (2008). arXiv:0709.0742

    Article  ADS  Google Scholar 

  38. K. Dusling, D. Teaney, Simulating elliptic flow with viscous hydrodynamics. Phys. Rev. C 77, 034905 (2008). arXiv:0710.5932

    Article  ADS  Google Scholar 

  39. H. Song, U.W. Heinz, Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions. Phys. Rev. C 77, 064901 (2008). arXiv:0712.3715

    Article  ADS  Google Scholar 

  40. M. Luzum, P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 78, 034915 (2008). arXiv:0804.4015

    Article  ADS  Google Scholar 

  41. P. Benincasa, A. Buchel, A.O. Starinets, Sound waves in strongly coupled non-conformal gauge theory plasma. Nucl. Phys. B 733, 160–187 (2006). arXiv:hep-th/0507026

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Erdmenger, M. Haack, M. Kaminski, A. Yarom, Fluid dynamics of R-charged black holes. JHEP 01, 055 (2009). arXiv:0809.2488

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Haack, A. Yarom, Universality of second order transport coefficients from the gauge-string duality. Nucl. Phys. B 813, 140–155 (2009). arXiv:0811.1794

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Grozdanov, A.O. Starinets, On the universal identity in second order hydrodynamics. JHEP 03, 007 (2015). arXiv:1412.5685

    Article  MathSciNet  ADS  Google Scholar 

  45. E. Shaverin, A. Yarom, Universality of second order transport in Gauss-Bonnet gravity. JHEP 04, 013 (2013). arXiv:1211.1979

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Grozdanov, A.O. Starinets, Zero-viscosity limit in a holographic Gauss-Bonnet liquid. Theor. Math. Phys. 182, 61–73 (2015)

    Article  MathSciNet  Google Scholar 

  47. E. Shaverin, A breakdown of a universal hydrodynamic relation in Gauss-Bonnet gravity. arXiv:1509.05418

  48. F. Bigazzi, A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD. JHEP 08, 128 (2010). arXiv:1006.4634

    Article  ADS  Google Scholar 

  49. I. Kanitscheider, K. Skenderis, Universal hydrodynamics of non-conformal branes. JHEP 04, 062 (2009). arXiv:0901.1487

    Google Scholar 

  50. S.S. Gubser, A. Nellore, Mimicking the QCD equation of state with a dual black hole. Phys. Rev. D 78, 086007 (2008). arXiv:0804.0434

    Article  ADS  Google Scholar 

  51. C. Wu, Y. Chen, M. Huang, Fluid/gravity correspondence: Second order transport coefficients in compactified D4-branes. JHEP 01, 118 (2017). arXiv:1604.07765

  52. G.S. Denicol, H. Niemi, E. Molnar, D.H. Rischke, Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 85, 114047 (2012). arXiv:1202.4551

    Article  ADS  Google Scholar 

  53. E. Molnár, H. Niemi, G.S. Denicol, D.H. Rischke, Relative importance of second-order terms in relativistic dissipative fluid dynamics. Phys. Rev. D 89, 074010 (2014). arXiv:1308.0785

    Article  ADS  Google Scholar 

  54. G.S. Denicol, S. Jeon, C. Gale, Transport coefficients of bulk viscous pressure in the 14-moment approximation. Phys. Rev. C 90, 024912 (2014). arXiv:1403.0962

    Article  ADS  Google Scholar 

  55. G.S. Denicol, W. Florkowski, R. Ryblewski, M. Strickland, Shear-bulk coupling in nonconformal hydrodynamics. Phys. Rev. C 90, 044905 (2014). arXiv:1407.4767

    Article  ADS  Google Scholar 

  56. A. Jaiswal, R. Ryblewski, M. Strickland, Transport coefficients for bulk viscous evolution in the relaxation time approximation. Phys. Rev. C 90, 044908 (2014). arXiv:1407.7231

    Article  ADS  Google Scholar 

  57. S.I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography. JHEP 02, 051 (2015). arXiv:1412.2968

    ADS  Google Scholar 

  58. F. Becattini, E. Grossi, Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration. Phys. Rev. D 92, 045037 (2015). arXiv:1505.07760

  59. D. Mateos, R.C. Myers, R.M. Thomson, Thermodynamics of the brane. JHEP 05, 067 (2007). arXiv:hep-th/0701132

    Google Scholar 

  60. I. Kanitscheider, K. Skenderis, M. Taylor, Precision holography for non-conformal branes. JHEP 09, 094 (2008). arXiv:0807.3324

    Google Scholar 

  61. S. Grozdanov, N. Kaplis, Constructing higher-order hydrodynamics: The third order. Phys. Rev. D 93, 066012 (2016). arXiv:1507.02461

  62. M. Ammon, J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  63. J. Zaanen, Y.-W. Sun, Y. Liu, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  64. O. Saremi, K.A. Sohrabi, Causal three-point functions and nonlinear second-order hydrodynamic coefficients in AdS/CFT. JHEP 11, 147 (2011). arXiv:1105.4870

    Article  MathSciNet  ADS  Google Scholar 

  65. P. Arnold, D. Vaman, C. Wu, W. Xiao, Second order hydrodynamic coefficients from 3-point stress tensor correlators via AdS/CFT. JHEP 10, 033 (2011). arXiv:1105.4645

    MathSciNet  MATH  ADS  Google Scholar 

  66. V. Balasubramanian, P. Kraus, A Stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999). arXiv:hep-th/9902121

    Article  MathSciNet  ADS  Google Scholar 

  67. L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, Novel local CFT and exact results on perturbations of N=4 superYang Mills from AdS dynamics. JHEP 12, 022 (1998). arXiv:hep-th/9810126

    Article  ADS  Google Scholar 

  68. L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, Confinement and condensates without fine tuning in supergravity duals of gauge theories. JHEP 05, 026 (1999). arXiv:hep-th/9903026

    Article  ADS  Google Scholar 

  69. L. Girardello, M. Petrini, M. Porrati, A. Zaffaroni, The Supergravity dual of N=1 superYang-Mills theory. Nucl. Phys. B 569, 451–469 (2000). arXiv:hep-th/9909047

    Article  ADS  Google Scholar 

  70. D.Z. Freedman, S.S. Gubser, K. Pilch, N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem. Adv. Theor. Math. Phys. 3, 363–417 (1999). arXiv:hep-th/9904017

    Article  MathSciNet  Google Scholar 

  71. K. Pilch, N.P. Warner, N=2 supersymmetric RG flows and the IIB dilaton. Nucl. Phys. B 594, 209–228 (2001). arXiv:hep-th/0004063

    Article  MathSciNet  ADS  Google Scholar 

  72. I.R. Klebanov, M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and chi SB resolution of naked singularities. JHEP 08, 052 (2000). arXiv:hep-th/0007191

    Article  ADS  Google Scholar 

  73. J.M. Maldacena, C. Nunez, Towards the large N limit of pure N=1 superYang-Mills. Phys. Rev. Lett. 86, 588–591 (2001). arXiv:hep-th/0008001

    Article  MathSciNet  ADS  Google Scholar 

  74. M. Bianchi, D.Z. Freedman, K. Skenderis, How to go with an RG flow. JHEP 08, 041 (2001). arXiv:hep-th/0105276

    Article  MathSciNet  ADS  Google Scholar 

  75. F. Bigazzi, A.L. Cotrone, M. Petrini, A. Zaffaroni, Supergravity duals of supersymmetric four-dimensional gauge theories. Riv. Nuovo Cim. 25N12, 1–70 (2002). arXiv:hep-th/0303191

  76. A. Buchel, J.T. Liu, Thermodynamics of the N=2* flow. JHEP 11, 031 (2003). arXiv:hep-th/0305064

    Article  MathSciNet  ADS  Google Scholar 

  77. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). arXiv:hep-th/9803131

    Article  MathSciNet  Google Scholar 

  78. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). arXiv:hep-th/0002230

    Article  ADS  Google Scholar 

  79. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence. Phys. Rev. D 60, 046002 (1999). arXiv:hep-th/9903203

    Article  MathSciNet  ADS  Google Scholar 

  80. S.S. Gubser, I.R. Klebanov, A.W. Peet, Entropy and temperature of black 3-branes. Phys. Rev. D 54, 3915–3919 (1996). arXiv:hep-th/9602135

    Article  MathSciNet  ADS  Google Scholar 

  81. M. Henningson, K. Skenderis, The Holographic Weyl anomaly. JHEP 07, 023 (1998). arXiv:hep-th/9806087

    Article  Google Scholar 

  82. A. Buchel, J.T. Liu, A.O. Starinets, Coupling constant dependence of the shear viscosity in N=4 supersymmetric Yang-Mills theory. Nucl. Phys. B 707, 56–68 (2005). arXiv:hep-th/0406264

    Article  MathSciNet  ADS  Google Scholar 

  83. P. Benincasa, A. Buchel, Transport properties of N=4 supersymmetric Yang-Mills theory at finite coupling. JHEP 01, 103 (2006). arXiv:hep-th/0510041

    Article  MathSciNet  ADS  Google Scholar 

  84. A. Buchel, Shear viscosity of boost invariant plasma at finite coupling. Nucl. Phys. B 802, 281–306 (2008). arXiv:0801.4421

    Article  ADS  Google Scholar 

  85. A. Buchel, Resolving disagreement for eta/s in a CFT plasma at finite coupling. Nucl. Phys. B 803, 166–170 (2008). arXiv:0805.2683

    Article  ADS  Google Scholar 

  86. R.C. Myers, M.F. Paulos, A. Sinha, Quantum corrections to eta/s. Phys. Rev. D 79, 041901 (2009). arXiv:0806.2156

    Article  ADS  Google Scholar 

  87. A. Buchel, M. Paulos, Relaxation time of a CFT plasma at finite coupling. Nucl. Phys. B 805, 59–71 (2008). arXiv:0806.0788

    Article  MathSciNet  ADS  Google Scholar 

  88. M. Attems, J. Casalderrey-Solana, D. Mateos, I. Papadimitriou, D. Santos-Oliván, C.F. Sopuerta et al., Thermodynamics, transport and relaxation in non-conformal theories. JHEP 10, 155 (2016). arXiv:1603.01254

  89. A. Khavaev, K. Pilch, N.P. Warner, New vacua of gauged N=8 supergravity in five-dimensions. Phys. Lett. B 487, 14–21 (2000). arXiv:hep-th/9812035

    Article  MathSciNet  ADS  Google Scholar 

  90. H.A. Chamblin, H.S. Reall, Dynamic dilatonic domain walls. Nucl. Phys. B 562, 133–157 (1999). arXiv:hep-th/9903225

    Article  MathSciNet  ADS  Google Scholar 

  91. S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid. JHEP 07, 104 (2012). arXiv:1201.4654

    ADS  Google Scholar 

  92. K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz, A. Yarom, Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 109, 101601 (2012). arXiv:1203.3556

    Article  ADS  Google Scholar 

  93. F.M. Haehl, R. Loganayagam, M. Rangamani, The eightfold way to dissipation. Phys. Rev. Lett. 114, 201601 (2015). arXiv:1412.1090

    Article  ADS  Google Scholar 

  94. F.M. Haehl, R. Loganayagam, M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation. JHEP 05, 060 (2015). arXiv:1502.00636

  95. M.A. York, G.D. Moore, Second order hydrodynamic coefficients from kinetic theory. Phys. Rev. D 79, 054011 (2009). arXiv:0811.0729

    Article  ADS  Google Scholar 

  96. M. Crossley, P. Glorioso, H. Liu, Effective field theory of dissipative fluids. arXiv:1511.03646

  97. P. Glorioso, M. Crossley, H. Liu, Effective field theory for dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current. arXiv:1701.07817

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Probst .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Probst, J. (2018). Second-Order Hydrodynamics and Universality in Non-conformal Holographic Fluids. In: Applications of the Gauge/Gravity Duality. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93967-4_4

Download citation

Publish with us

Policies and ethics