Skip to main content

Machining Tribology

  • Chapter
  • First Online:
Machining Dynamics
  • 2224 Accesses

Abstract

Chapter 8 investigates the role of tribology, or the study of friction, wear, and lubrication, in machining performance. It is shown that tribology information is required to select machining parameters that minimize cost, including: (1) relationships between machining parameters, workpiece material properties, cutting forces, and the corresponding temperature field; (2) tool life, common wear features, and the dependence of machining cost on tool life; and (3) cutting fluids and their effect on tool life.

There are two important things for full success in life: 1. Don’t tell everything you know.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    T. Schmitz recognizes the contributions of J. Karandikar to this experimental study.

  2. 2.

    T. Schmitz recognizes the contributions of H.S. Kim to this case study.

References

  1. Tlusty, G. (2000). Manufacturing processes and equipment, chapter 8: Cutting mechanics. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  2. Rubeo, M., & Schmitz, T. (2016). Milling force modeling: A comparison of two approaches. Procedia Manufacturing, 5, 90–105.

    Article  Google Scholar 

  3. Altintas, Y. (2000). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  4. Gunay, M., Aslan, E., Korkut, I., & Seker, U. (2004). Investigation of the effect of rake angle on main cutting force. International Journal of Machine Tools and Manufacture, 44, 953–959.

    Article  Google Scholar 

  5. Taylor, F. W. (1907). On the art of cutting metals. Transactions of the ASME, 28, 31–350.

    Google Scholar 

  6. Teti, R. (1995). A review of tool condition monitoring literature database. Annals of the CIRP, 44(2), 659–666.

    Google Scholar 

  7. Dimla, D. E. (2000). Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. International Journal of Machine Tools and Manufacture, 40, 1073–1098.

    Article  Google Scholar 

  8. Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16(4), 487–546.

    Article  Google Scholar 

  9. Retrieved April 1, 2017, from http://www.sandvik.coromant.com/en-us/knowledge/featured-articles/pages/benefits-of-high-pressure-coolant.aspx

  10. Retrieved April 1, 2017, from https://www.youtube.com/watch?v=QwoI_F4Xed0

  11. Retrieved April 1, 2017, from http://www.chipblaster.com/orifice-reference-chart

  12. Machado, A. R., & Wallbank, J. (1994). The effects of a high-pressure coolant jet on machining. Proceedings of the Institution of Mechanical Engineers, 208, 29–38.

    Article  Google Scholar 

  13. Exugwu, E. O., Da Silva, R. B., Bonney, J., & Machado, A. R. (2005). Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 45, 1009–1014.

    Article  Google Scholar 

  14. Nandy, A. K., Gowrishankar, M. C., & Paul, S. (2009). Some studies on high-pressure cooling in turning of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 49, 182–198.

    Article  Google Scholar 

  15. Fadare, D. A., Ezugwu, E. O., & Bonney, J. (2009). Modeling of tool wear parameters in high-pressure coolant assisted turning of titanium alloy Ti-6Al-4V using artificial neural networks. The Pacific Journal of Science and Technology, 10(2), 68–76.

    Google Scholar 

  16. Ezugwu, E. O., Bonney, J., Da Silva, B., & Cakir, O. (2007). Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47, 884–891.

    Article  Google Scholar 

  17. Sharma, V., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49, 435–453.

    Article  Google Scholar 

  18. Lopez de Lacalle, L. N., Perez-Bilbatua, J., Sanchez, J. A., Llorente, I., Gutierrez, A., & Alboniga, J. (2000). Using high pressure coolant in the drilling and turning of low machinability alloys. International Journal of Advanced Manufacturing Technology, 16, 85–91.

    Article  Google Scholar 

  19. Palanisamy, S., McDonald, S. D., & Dargusch, M. S. (2009). Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. International Journal of Machine Tools and Manufacture, 49, 739–743.

    Article  Google Scholar 

  20. Kaminski, J., & Alvelid, B. (2000). Temperature reduction in the cutting zone in water-jet assisted turning. Journal of Materials Processing Technology, 106, 68–73.

    Article  Google Scholar 

  21. Kovacevic, R., Cherukuthota, C., & Mazurkiewicz, M. (1995). High pressure waterjet cooling/lubrication to improve machining efficiency in milling. International Journal of Machine Tools and Manufacture, 35(10), 1459–1473.

    Article  Google Scholar 

  22. Rahman, M., Kumar, A. S., & Choudhury, M. R. (2000). Identification of effective zones for high pressure coolant in milling. Annals of the CIRP, 49(1), 47–52.

    Article  Google Scholar 

  23. Kumar, A. S., Rahman, M., & Ng, S. L. (2002). Effect of high-pressure coolant on machining performance. International Journal of Advanced Manufacturing Technology, 20, 83–91.

    Article  Google Scholar 

  24. Shokrani, A., Dhokia, V., & Newman, S. T. (2012). Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57, 83–101.

    Article  Google Scholar 

  25. Pu, Z., Outeirob, J. C., Batista, A. C., Dillon Jr., O. W., Puleo, D. A., & Jawahir, I. S. (2012). Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. International Journal of Machine Tools and Manufacture, 56, 17–27.

    Article  Google Scholar 

  26. Kaynak, Y., Karaca, H. E., Noebe, R. D., & Jawahir, I. S. (2013). Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear, 306, 51–63.

    Article  Google Scholar 

  27. Wang, Z. Y., & Rajurkar, K. P. (2000). Cryogenic machining of hard-to-cut materials. Wear, 239(2), 168–175.

    Article  Google Scholar 

  28. Abele, E., & Schramm, B. (2008). Using PCD for machining CGI with a CO2 coolant system. Production Engineering, 2(2), 165–169.

    Article  Google Scholar 

  29. Machai, C., & Biermann, D. (2011). Machining of β-titanium-alloy Ti-10V-2Fe-3Al under cryogenic conditions: Cooling with carbon dioxide snow. Journal of Materials Processing Technology, 211(6), 1175–1183.

    Article  Google Scholar 

  30. Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7), 760–766.

    Article  Google Scholar 

  31. Tyler, C., & Schmitz, T. (2014). Examining the effects of cooling/lubrication conditions on tool wear in milling Hastelloy X. Transactions of the NAMRI/SME, 42, 1–8.

    Google Scholar 

  32. Kayhan, M., & Budak, E. (2009). An experimental investigation of chatter effects on tool life. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), 1455–1463.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

  1. 1.

    Tribology is the study of _______________.

  2. 2.

    Consider orthogonal cutting of 304 stainless steel with the following parameters: hm = 0.1 mm, b = 4 mm, v = 2 m/s, α = 12 deg, ϕs = 26 deg, kt = 3200 N/mm2, and kn = 1200 N/mm2. Calculate the following parameters.

    • Ks (N/mm2)

    • β (deg)

    • L (mm)

    • hd (mm)

    • r

    • vc (m/s)

    • vs (m/s)

    • F (N)

    • Fs (N)

    • Ff (N)

    • Ps (W)

    • Pf (W)

  3. 3.

    An increase in cutting speed tends to increase the chip temperature. T/F

  4. 4.

    Built-up edge can cause the effective rake angle to change during a cutting operation. T/F

  5. 5.

    Consider the Taylor-type tool life model: C = vpfrqT, where C, p, and q are constants. Tests were performed and the tool life was measured; the data is provided in Table 8.6. Using this data determine the constants for the tool life model.

    Table 8.6 Tool life testing data
  6. 6.

    Using the populated tool life model from problem 5, plot the cutting speed (horizontal axis) versus the tool life on a log-log scale for feed values of 0.1 mm and 0.2 mm. Use a cutting speed range of 50 m/min to 300 m/min for the horizontal axis and a tool life range of 2 min to 4000 min on the vertical axis.

  7. 7.

    Using the data from Table 8.6 , determine the optimum cutting speed (m/min) by applying Eq. 8.31. For your calculation, use the cost parameters from Table 8.3 and a maximum permissible feed of 0.2 mm.

  8. 8.

    Calculate the mean power (kW) consumed in the following milling operation: Aluminum alloy workpiece with a specific cutting force of 710 N/mm2, slotting, 19.1 mm diameter endmill with four teeth, 8000 rpm, 3 mm axial depth, and 0.15 mm feed per tooth.

  9. 9.

    Define the acronym MQL.

  10. 10.

    Tool life is not affected by the machining stability. T/F

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, T.L., Smith, K.S. (2019). Machining Tribology. In: Machining Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-93707-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93707-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93706-9

  • Online ISBN: 978-3-319-93707-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics